package octez-plonk
module Arithmetic_gates : sig ... end
module Bls : sig ... end
module Boolean_gates : sig ... end
module Circuit : sig ... end
module Custom_gates : sig ... end
module Ecc_gates : sig ... end
module Evaluations_map : sig ... end
module Gates_common : sig ... end
module Hash_gates : sig ... end
module Identities : sig ... end
module Input_commitment : sig ... end
module List : sig ... end
module Main_protocol : sig ... end
aPlonK is a PlonK-based proving system. As such, it provides a way to create succinct cryptographic proofs about a given predicate, which can be then verified with a low computational cost.
module Main_protocol_intf : sig ... end
module Permutation_gate : sig ... end
module Plookup_gate : sig ... end
module Polynomial_commitment : sig ... end
module Polynomial_protocol : sig ... end
A polynomial protocol allows a prover to convince a verifier of the fact that certain algebraic identites between polynomials (polynomials that have been previously committed) hold when evaluated over a set of points. (In our implementation such set of points must be a subgroup of roots of unity.)
module Range_check_gate : sig ... end
module SMap : sig ... end
module Utils : sig ... end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>