package octez-libs
by^2 = x3 + ax^2 + x with b * (a^2 - 4) != 0
exception Not_on_curve of Bytes.t
Represents an element on the curve. In the case of a curve with a cofactor, the element is not necessarily in the prime subgroup.
module Scalar : Bls12_381.Ff_sig.PRIME
module Base : Bls12_381.Ff_sig.PRIME
val check_bytes : Bytes.t -> bool
Check if a point, represented as a byte array, is on the curve *
Attempt to construct a point from a byte array. Raise Not_on_curve
if the point is not on the curve
val zero : t
Zero of the elliptic curve
val one : t
A fixed generator of the elliptic curve
val is_zero : t -> bool
Return true
if the given element is zero
val random : ?state:Random.State.t -> unit -> t
Generate a random element
val a : Base.t
val b : Base.t
val cofactor : Z.t
is_on_curve ~x ~y
returns true
if the coordinates (x, y)
represents a point on the curve. It does not check the point is in the prime subgroup.
is_in_prime_subgroup ~x ~y
returns true
if the coordinates (x, y)
represents a point in the prime subgroup. The coordinates must be a point on the curve
Build a point from the affine coordinates. If the point is not on the curve and in the subgroup, returns None
Build a point from the affine coordinates. If the point is not on the curve and in the subgroup, raise Not_on_curve
.
Build a point from a compressed representation. It supposes the base field leaves at least a free bit in the last byte to encode the sign. Raise Not_on_curve
if the bytes do not represent a point on the curve and in the prime subgroup.
Same than of_compressed_bytes_exn
but returns an option instead of raising an exception