package ocaml-compiler
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Official release of OCaml 5.4.0
Install
dune-project
Dependency
Authors
Maintainers
Sources
ocaml-5.4.0.tar.gz
sha256=6fcf1b192e389e54c4f5cb51306ab2baee2a54a25b1770366de5a8b42695996e
doc/src/stdlib/pqueue.ml.html
Source file pqueue.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287(**************************************************************************) (* *) (* OCaml *) (* *) (* Jean-Christophe Filliâtre *) (* *) (* Copyright 2023 CNRS *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Priority queues over ordered elements. We choose to have polymorphic elements here, so that we can later derive both polymorphic and monomorphic priority queues from it. *) module type OrderedPolyType = sig type 'a t val compare : 'a t -> 'b t -> int end module MakeMinPoly(E: OrderedPolyType) = struct type 'a elt = 'a E.t (* Our priority queues are implemented using the standard "min heap" data structure, a dynamic array representing a binary tree. *) type 'a t = 'a E.t Dynarray.t let create = Dynarray.create let length = Dynarray.length let is_empty = Dynarray.is_empty let clear = Dynarray.clear (* The node at index [i] has children nodes at indices [2 * i + 1] and [2 * i + 2] -- if they are valid indices in the dynarray. *) let left_child i = 2 * i + 1 let right_child i = 2 * i + 2 let parent_node i = (i - 1) / 2 (* We say that a heap respects the "heap ordering" if the value of each node is no greater than the value of its children. The algorithm manipulates arrays that respect the heap ordering, except for one node whose value may be too small or too large. The auxiliary functions [sift_up] and [sift_down] take such a misplaced value, and move it "up" (respectively: "down") until the heap ordering is restored. Functions [sift_up] and [sift_down] do not perform swaps, but rather expect the value to be assigned in the heap as an additional parameter [x], resulting in twice less assignments. *) (* store [x] at index [i], moving it up if necessary *) let rec sift_up h i x = if i = 0 then Dynarray.set h 0 x else let p = parent_node i in let y = Dynarray.get h p in if E.compare x y < 0 then ( Dynarray.set h i y; sift_up h p x ) else Dynarray.set h i x let add h x = let i = Dynarray.length h in Dynarray.add_last h x; if i > 0 then sift_up h i x let add_iter h iter x = iter (add h) x let min_elt h = if Dynarray.is_empty h then None else Some (Dynarray.get h 0) let get_min_elt h = if Dynarray.is_empty h then invalid_arg "empty priority queue"; Dynarray.get h 0 let lt h i j = E.compare (Dynarray.get h i) (Dynarray.get h j) < 0 (* store [x] at index [i], moving it down if necessary *) let rec sift_down h ~len i x = let left = left_child i in if left >= len then Dynarray.set h i x (* no child, stop *) else let smallest = let right = right_child i in if right >= len then left (* no right child *) else if lt h left right then left else right in let y = Dynarray.get h smallest in if E.compare y x < 0 then ( Dynarray.set h i y; sift_down h ~len smallest x ) else Dynarray.set h i x let pop_min h = let n = Dynarray.length h in if n = 0 then None else let x = Dynarray.pop_last h in if n = 1 then Some x else ( let r = Dynarray.get h 0 in sift_down h ~len:(n - 1) 0 x; Some r ) let remove_min h = let n = Dynarray.length h in if n > 0 then ( let x = Dynarray.pop_last h in if n > 1 then sift_down h ~len:(n - 1) 0 x ) let copy = Dynarray.copy (* array to heap in linear time (Floyd, 1964) many elements travel a short distance, few travel longer distances and we can show that it totals to O(N) *) let heapify h = let n = Dynarray.length h in for i = n/2 - 1 downto 0 do sift_down h ~len:n i (Dynarray.get h i) done; h let of_array a = Dynarray.of_array a |> heapify let of_list l = Dynarray.of_list l |> heapify let of_iter iter x = let a = Dynarray.create () in iter (Dynarray.add_last a) x; heapify a let iter_unordered = Dynarray.iter let fold_unordered = Dynarray.fold_left end module type MinPoly = sig type 'a t type 'a elt val create: unit ->'a t val length: 'a t -> int val is_empty: 'a t -> bool val add: 'a t -> 'a elt -> unit val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit val min_elt: 'a t -> 'a elt option val get_min_elt: 'a t -> 'a elt val pop_min: 'a t -> 'a elt option val remove_min: 'a t -> unit val clear: 'a t -> unit val copy: 'a t -> 'a t val of_array: 'a elt array -> 'a t val of_list: 'a elt list -> 'a t val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t val iter_unordered: ('a elt -> unit) -> 'a t -> unit val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc end module type MaxPoly = sig type 'a t type 'a elt val create: unit -> 'a t val length: 'a t -> int val is_empty: 'a t -> bool val add: 'a t -> 'a elt -> unit val add_iter: 'a t -> (('a elt -> unit) -> 'x -> unit) -> 'x -> unit val max_elt: 'a t -> 'a elt option val get_max_elt: 'a t -> 'a elt val pop_max: 'a t -> 'a elt option val remove_max: 'a t -> unit val clear: 'a t -> unit val copy: 'a t -> 'a t val of_array: 'a elt array -> 'a t val of_list: 'a elt list -> 'a t val of_iter: (('a elt -> unit) -> 'x -> unit) -> 'x -> 'a t val iter_unordered: ('a elt -> unit) -> 'a t -> unit val fold_unordered: ('acc -> 'a elt -> 'acc) -> 'acc -> 'a t -> 'acc end module MakeMaxPoly(E: OrderedPolyType) : MaxPoly with type 'a elt = 'a E.t = struct include MakeMinPoly(struct type 'a t = 'a E.t let compare x y = E.compare y x end) (* renaming a few functions... *) let max_elt = min_elt let get_max_elt = get_min_elt let pop_max = pop_min let remove_max = remove_min end (* Monomorphic priority queues *) module type OrderedType = sig type t val compare: t -> t -> int end module type Min = sig type t type elt val create: unit ->t val length: t -> int val is_empty: t -> bool val add: t -> elt -> unit val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit val min_elt: t -> elt option val get_min_elt: t -> elt val pop_min: t -> elt option val remove_min: t -> unit val clear: t -> unit val copy: t -> t val of_array: elt array -> t val of_list: elt list -> t val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t val iter_unordered: (elt -> unit) -> t -> unit val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc end module MakeMin(E: OrderedType) = struct include MakeMinPoly(struct type 'a t = E.t let compare = E.compare end) type t = E.t Dynarray.t end module type Max = sig type t type elt val create: unit ->t val length: t -> int val is_empty: t -> bool val add: t -> elt -> unit val add_iter: t -> ((elt -> unit) -> 'x -> unit) -> 'x -> unit val max_elt: t -> elt option val get_max_elt: t -> elt val pop_max: t -> elt option val remove_max: t -> unit val clear: t -> unit val copy: t -> t val of_array: elt array -> t val of_list: elt list -> t val of_iter: ((elt -> unit) -> 'x -> unit) -> 'x -> t val iter_unordered: (elt -> unit) -> t -> unit val fold_unordered: ('acc -> elt -> 'acc) -> 'acc -> t -> 'acc end module MakeMax(E: OrderedType) = struct include MakeMinPoly(struct type 'a t = E.t let compare x y = E.compare y x end) type t = E.t Dynarray.t let max_elt = min_elt let get_max_elt = get_min_elt let pop_max = pop_min let remove_max = remove_min end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>