package ocaml-base-compiler
Memory management control and statistics; finalised values.
type stat = {
minor_words : float;
(*Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code.
*)promoted_words : float;
(*Number of words allocated in the minor heap that survived a minor collection and were moved to the major heap since the program was started.
*)major_words : float;
(*Number of words allocated in the major heap, including the promoted words, since the program was started.
*)minor_collections : int;
(*Number of minor collections since the program was started.
*)major_collections : int;
(*Number of major collection cycles completed since the program was started.
*)heap_words : int;
(*Total size of the major heap, in words.
*)heap_chunks : int;
(*Number of contiguous pieces of memory that make up the major heap.
*)live_words : int;
(*Number of words of live data in the major heap, including the header words.
*)live_blocks : int;
(*Number of live blocks in the major heap.
*)free_words : int;
(*Number of words in the free list.
*)free_blocks : int;
(*Number of blocks in the free list.
*)largest_free : int;
(*Size (in words) of the largest block in the free list.
*)fragments : int;
(*Number of wasted words due to fragmentation. These are 1-words free blocks placed between two live blocks. They are not available for allocation.
*)compactions : int;
(*Number of heap compactions since the program was started.
*)top_heap_words : int;
(*Maximum size reached by the major heap, in words.
*)stack_size : int;
(*Current size of the stack, in words.
*)
}
The memory management counters are returned in a stat
record.
The total amount of memory allocated by the program since it was started is (in words) minor_words + major_words - promoted_words
. Multiply by the word size (4 on a 32-bit machine, 8 on a 64-bit machine) to get the number of bytes.
type control = {
mutable minor_heap_size : int;
(*The size (in words) of the minor heap. Changing this parameter will trigger a minor collection. Default: 256k.
*)mutable major_heap_increment : int;
(*How much to add to the major heap when increasing it. If this number is less than or equal to 1000, it is a percentage of the current heap size (i.e. setting it to 100 will double the heap size at each increase). If it is more than 1000, it is a fixed number of words that will be added to the heap. Default: 15.
*)mutable space_overhead : int;
(*The major GC speed is computed from this parameter. This is the memory that will be "wasted" because the GC does not immediately collect unreachable blocks. It is expressed as a percentage of the memory used for live data. The GC will work more (use more CPU time and collect blocks more eagerly) if
*)space_overhead
is smaller. Default: 80.mutable verbose : int;
(*This value controls the GC messages on standard error output. It is a sum of some of the following flags, to print messages on the corresponding events:
0x001
Start of major GC cycle.0x002
Minor collection and major GC slice.0x004
Growing and shrinking of the heap.0x008
Resizing of stacks and memory manager tables.0x010
Heap compaction.0x020
Change of GC parameters.0x040
Computation of major GC slice size.0x080
Calling of finalisation functions.0x100
Bytecode executable and shared library search at start-up.0x200
Computation of compaction-triggering condition.0x400
Output GC statistics at program exit. Default: 0.
mutable max_overhead : int;
(*Heap compaction is triggered when the estimated amount of "wasted" memory is more than
*)max_overhead
percent of the amount of live data. Ifmax_overhead
is set to 0, heap compaction is triggered at the end of each major GC cycle (this setting is intended for testing purposes only). Ifmax_overhead >= 1000000
, compaction is never triggered. If compaction is permanently disabled, it is strongly suggested to setallocation_policy
to 1. Default: 500.mutable stack_limit : int;
(*The maximum size of the stack (in words). This is only relevant to the byte-code runtime, as the native code runtime uses the operating system's stack. Default: 1024k.
*)mutable allocation_policy : int;
(*The policy used for allocating in the heap. Possible values are 0 and 1. 0 is the next-fit policy, which is quite fast but can result in fragmentation. 1 is the first-fit policy, which can be slower in some cases but can be better for programs with fragmentation problems. Default: 0.
*)window_size : int;
(*The size of the window used by the major GC for smoothing out variations in its workload. This is an integer between 1 and 50. Default: 1.
*)
}
The GC parameters are given as a control
record. Note that these parameters can also be initialised by setting the OCAMLRUNPARAM environment variable. See the documentation of ocamlrun
.
val stat : unit -> stat
Return the current values of the memory management counters in a stat
record. This function examines every heap block to get the statistics.
val quick_stat : unit -> stat
Same as stat
except that live_words
, live_blocks
, free_words
, free_blocks
, largest_free
, and fragments
are set to 0. This function is much faster than stat
because it does not need to go through the heap.
Return (minor_words, promoted_words, major_words)
. This function is as fast as quick_stat
.
Number of words allocated in the minor heap since the program was started. This number is accurate in byte-code programs, but only an approximation in programs compiled to native code.
In native code this function does not allocate.
val get : unit -> control
Return the current values of the GC parameters in a control
record.
val set : control -> unit
set r
changes the GC parameters according to the control
record r
. The normal usage is: Gc.set { (Gc.get()) with Gc.verbose = 0x00d }
major_slice n
Do a minor collection and a slice of major collection. n
is the size of the slice: the GC will do enough work to free (on average) n
words of memory. If n
= 0, the GC will try to do enough work to ensure that the next automatic slice has no work to do. This function returns an unspecified integer (currently: 0).
Do a minor collection, finish the current major collection cycle, and perform a complete new cycle. This will collect all currently unreachable blocks.
Perform a full major collection and compact the heap. Note that heap compaction is a lengthy operation.
val print_stat : out_channel -> unit
Print the current values of the memory management counters (in human-readable form) into the channel argument.
Return the total number of bytes allocated since the program was started. It is returned as a float
to avoid overflow problems with int
on 32-bit machines.
get_bucket n
returns the current size of the n
-th future bucket of the GC smoothing system. The unit is one millionth of a full GC. Raise Invalid_argument
if n
is negative, return 0 if n is larger than the smoothing window.
get_credit ()
returns the current size of the "work done in advance" counter of the GC smoothing system. The unit is one millionth of a full GC.
Return the number of times we tried to map huge pages and had to fall back to small pages. This is always 0 if OCAMLRUNPARAM
contains H=1
.
finalise f v
registers f
as a finalisation function for v
. v
must be heap-allocated. f
will be called with v
as argument at some point between the first time v
becomes unreachable (including through weak pointers) and the time v
is collected by the GC. Several functions can be registered for the same value, or even several instances of the same function. Each instance will be called once (or never, if the program terminates before v
becomes unreachable).
The GC will call the finalisation functions in the order of deallocation. When several values become unreachable at the same time (i.e. during the same GC cycle), the finalisation functions will be called in the reverse order of the corresponding calls to finalise
. If finalise
is called in the same order as the values are allocated, that means each value is finalised before the values it depends upon. Of course, this becomes false if additional dependencies are introduced by assignments.
In the presence of multiple OCaml threads it should be assumed that any particular finaliser may be executed in any of the threads.
Anything reachable from the closure of finalisation functions is considered reachable, so the following code will not work as expected:
let v = ... in Gc.finalise (fun _ -> ...v...) v
Instead you should make sure that v
is not in the closure of the finalisation function by writing:
let f = fun x -> ... let v = ... in Gc.finalise f v
The f
function can use all features of OCaml, including assignments that make the value reachable again. It can also loop forever (in this case, the other finalisation functions will not be called during the execution of f, unless it calls finalise_release
). It can call finalise
on v
or other values to register other functions or even itself. It can raise an exception; in this case the exception will interrupt whatever the program was doing when the function was called.
finalise
will raise Invalid_argument
if v
is not guaranteed to be heap-allocated. Some examples of values that are not heap-allocated are integers, constant constructors, booleans, the empty array, the empty list, the unit value. The exact list of what is heap-allocated or not is implementation-dependent. Some constant values can be heap-allocated but never deallocated during the lifetime of the program, for example a list of integer constants; this is also implementation-dependent. Note that values of types float
are sometimes allocated and sometimes not, so finalising them is unsafe, and finalise
will also raise Invalid_argument
for them. Values of type 'a Lazy.t
(for any 'a
) are like float
in this respect, except that the compiler sometimes optimizes them in a way that prevents finalise
from detecting them. In this case, it will not raise Invalid_argument
, but you should still avoid calling finalise
on lazy values.
The results of calling String.make
, Bytes.make
, Bytes.create
, Array.make
, and Pervasives.ref
are guaranteed to be heap-allocated and non-constant except when the length argument is 0
.
same as finalise
except the value is not given as argument. So you can't use the given value for the computation of the finalisation function. The benefit is that the function is called after the value is unreachable for the last time instead of the first time. So contrary to finalise
the value will never be reachable again or used again. In particular every weak pointer and ephemeron that contained this value as key or data is unset before running the finalisation function. Moreover the finalisation function attached with `GC.finalise` are always called before the finalisation function attached with `GC.finalise_last`.
A finalisation function may call finalise_release
to tell the GC that it can launch the next finalisation function without waiting for the current one to return.
An alarm is a piece of data that calls a user function at the end of each major GC cycle. The following functions are provided to create and delete alarms.
val create_alarm : (unit -> unit) -> alarm
create_alarm f
will arrange for f
to be called at the end of each major GC cycle, starting with the current cycle or the next one. A value of type alarm
is returned that you can use to call delete_alarm
.
val delete_alarm : alarm -> unit
delete_alarm a
will stop the calls to the function associated to a
. Calling delete_alarm a
again has no effect.