package note
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file note.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946(*--------------------------------------------------------------------------- Copyright (c) 2018 The note programmers. All rights reserved. SPDX-License-Identifier: ISC ---------------------------------------------------------------------------*) module rec Src : sig (* Sources where data is pushed *) type t = V : _ typed -> t and 'a typed val compare : t -> t -> int val id : t -> int val cell : 'a typed -> 'a C.t val untyped : 'a typed -> t val logrs : t -> Logr.t list val add_logr : Logr.t -> t -> unit val rem_logr : Logr.t -> t -> unit val reset_stamp : t -> unit val find_active_step : Step.t -> Srcs.t -> Step.t val create : ?eq:('a -> 'a -> bool) -> 'a -> 'a typed end = struct type t = V : _ typed -> t and 'a typed = { id : int; (* unique id for the source *) cell : 'a C.t; (* Cell holding the source's value *) mutable logrs : Logr.t list (* loggers that depend on the source *); self : t; (* self, untyped. *) } let id (V s) = s.id let cell s = s.cell let untyped s = s.self let compare (V s) (V t) = (Stdlib.compare : int -> int -> int) s.id t.id let logrs (V s) = s.logrs let add_logr logr (V s) = s.logrs <- logr :: s.logrs let rem_logr logr (V s) = let rec rem logr acc = function | [] -> acc | v :: vs when v == logr -> List.rev_append vs acc | v :: vs -> rem logr (v :: acc) vs in s.logrs <- rem logr [] s.logrs let reset_stamp (V s) = C.set_stamp s.cell Step.nil exception Step of Step.t let find_active_step step ss = if step != Step.nil then step else let find_not_nil (V s) = let step = C.stamp s.cell in if step != Step.nil then raise_notrace (Step step) in try Srcs.iter find_not_nil ss; Step.nil with Step s -> s let uid = let id = ref 0 in fun () -> incr id; !id let create ?eq v = let update _ _ = () in let cell = C.create ?eq ~step:Step.nil ~srcs:Srcs.empty v ~update in let rec src = { id = uid (); cell; logrs = []; self = V src } in C.set_srcs cell (Srcs.singleton src.self); C.set_srcs_changed cell false; src end and Srcs : Set.S with type elt = Src.t = Set.Make (Src) and C : sig (* Cells *) type 'a t type untyped = C : 'a t -> untyped val create : ?eq:('a -> 'a -> bool) -> step:Step.t -> srcs:Srcs.t -> 'a -> update:(Step.t -> 'a t -> unit) -> 'a t val const : ?eq:('a -> 'a -> bool) -> 'a -> 'a t val eq : 'a t -> ('a -> 'a -> bool) val set_eq : 'a t -> ('a -> 'a -> bool) -> unit val with_eq : ('a -> 'a -> bool) -> 'a t -> 'a t val stamp : 'a t -> Step.t val set_stamp : 'a t -> Step.t -> unit val srcs : 'a t -> Srcs.t val srcs_changed : 'a t -> bool val set_srcs : 'a t -> Srcs.t -> unit val set_srcs_changed : 'a t -> bool -> unit val value : 'a t -> 'a val value_changed : 'a t -> bool val set_value : 'a t -> 'a -> unit val update : Step.t -> 'a t -> unit val set_update : 'a t -> (Step.t -> 'a t -> unit) -> unit val src_update : Step.t -> 'a t -> 'a -> bool val up_to_date_value : 'a t -> 'a val create_instant : step:Step.t -> srcs:Srcs.t -> 'a option -> update:(Step.t -> 'a option t -> unit) -> 'a option t val reset_instant : 'a option t -> unit val set_instant : Step.t -> 'a option t -> 'a option -> unit val delay : 'a -> 'a t Lazy.t -> 'a t val fix : ?eq:('a -> 'a -> bool) -> 'a -> ('a t -> 'a t * 'b) -> 'b val defer : 'a -> 'a t -> 'a t val dump_src_ids : Format.formatter -> 'a t -> unit end = struct type 'a t = { mutable eq : 'a -> 'a -> bool; (* testing for cell value equality *) mutable stamp : Step.t; (* last step in which the cell updated *) mutable srcs : Srcs.t; (* sources the cell depends on *) mutable srcs_changed : bool; (* [true] if [srcs] changed *) mutable value : 'a; (* cell value *) mutable value_changed : bool; (* [true] if [value] changed *) mutable update : Step.t -> 'a t -> unit; }(* updates [value] and [srcs] *) type untyped = C : 'a t -> untyped let create ?(eq = ( = )) ~step ~srcs value ~update = { eq; stamp = step; srcs; srcs_changed = true; value; value_changed = true; update } let const ?(eq = ( = )) v = { eq; stamp = Step.nil; srcs = Srcs.empty; srcs_changed = false; value = v; value_changed = false; update = (fun _ _ -> ()) } let eq c = c.eq let set_eq c eq = c.eq <- eq let with_eq eq c = { c with eq } let stamp c = c.stamp let set_stamp c stamp = c.stamp <- stamp let srcs_changed c = c.srcs_changed let set_srcs_changed c bool = c.srcs_changed <- bool let srcs c = c.srcs let set_srcs c srcs = c.srcs_changed <- true; c.srcs <- srcs let value c = c.value let value_changed c = c.value_changed let set_value c v = if c.eq v c.value then () else (c.value_changed <- true; c.value <- v) let update step c = if step != Step.nil && c.stamp != step then begin c.stamp <- step; c.srcs_changed <- false; c.value_changed <- false; (* XXX would be nice to avoid constructing the set *) if Srcs.(is_empty (inter c.srcs (Step.srcs step))) then () (* no need to go there, nothing can update *) else c.update step c end let set_update c u = c.update <- u let src_update step c v = c.value_changed <- false; if c.eq v c.value then false else (c.stamp <- step; c.value_changed <- true; c.value <- v; true) let up_to_date_value c = let step = Src.find_active_step Step.nil c.srcs in update step c; c.value let reset_instant c = c.value_changed <- false; c.value <- None let set_instant step c = function | None -> () | Some _ as v -> c.value_changed <- true; c.value <- v; Step.add_cleanup step (fun () -> reset_instant c) let create_instant ~step ~srcs value ~update = let value_changed = match value with None -> false | Some _ -> true in let c = { eq = ( = ); stamp = step; srcs; srcs_changed = true; value; value_changed; update } in if value_changed && step <> Step.nil then Step.add_cleanup step (fun () -> reset_instant c); c let delay i z = failwith "TOOD" let fix ?eq i cf = let src = Src.create ?eq i in let src = Src.V src and d = Src.cell src in let c, r = cf d in let c_update = c.update in let c_update step self = c_update step self; if c.value_changed then (Step.add_delayed step src); in let d_update step self = if step == Step.delayed then set_value self (value c) else () in c.update <- c_update; d.update <- d_update; let step = Src.find_active_step Step.nil (C.srcs c) in let () = update step c in if step == Step.nil then Step.execute_delayed (Srcs.singleton src); r let defer init c = (** XXX do we really need a source for that. *) let src = Src.create ~eq:c.eq init in let src = Src.V src and d = Src.cell src in let update step self = if step == Step.delayed then set_value self (value c) else begin C.(update step c); if C.srcs_changed c then C.set_srcs d (C.srcs c); if C.value_changed c then Step.add_delayed step src end in d.update <- update; let step = Src.find_active_step Step.nil (srcs c) in let () = update step c in let () = update step d in if step == Step.nil then Step.execute_delayed (Srcs.singleton src); d let dump_src_ids ppf c = Format.fprintf ppf "@[{%a}@]" Format.(pp_print_list ~pp_sep:pp_print_space pp_print_int) (List.map (fun s -> Src.id s) (Srcs.elements c.srcs)) end and Logr : sig type 'a obs val const : 'a -> 'a obs val obs_cell : 'a C.t -> 'a obs val app : ('a -> 'b) obs -> 'a obs -> 'b obs val ( $ ) : ('a -> 'b) obs -> 'a obs -> 'b obs type t val create : ?now:bool -> unit obs -> t val for_cell : ?now:bool -> 'a C.t -> ('a -> unit) -> t val force : t -> unit val destroy : t -> unit val update : Step.t -> t -> unit val hold : t -> unit val may_hold : t option -> unit val unhold_all : unit -> unit end = struct type 'a obs = C.untyped list * (unit -> 'a) let const v = [], fun () -> v let obs_cell c = [C.C c], fun () -> C.value c let app (fcs, f) (vcs, v) = List.rev_append fcs vcs, fun () -> (f ()) (v ()) let ( $ ) = app type t = { mutable stamp : Step.t; mutable srcs : Srcs.t; (* sources we are registered with *) cells : C.untyped list; (* cells we are observing *) log : unit -> unit (* logger action *) } let update_srcs l = let cells_srcs l = let add_cell acc (C.C c) = Srcs.union acc (C.srcs c) in List.fold_left add_cell Srcs.empty l.cells in let new_srcs = cells_srcs l in let rems = Srcs.diff l.srcs new_srcs in let adds = Srcs.diff new_srcs l.srcs in Srcs.iter (Src.rem_logr l) rems; Srcs.iter (Src.add_logr l) adds; l.srcs <- new_srcs let update step l = if step != Step.nil && step != l.stamp then begin l.stamp <- step; let rec loop step srcs_changed value_changed = function | [] -> if srcs_changed then update_srcs l; if value_changed then l.log () | (C.C c) :: cs -> C.update step c; loop step (srcs_changed || C.srcs_changed c) (value_changed || C.value_changed c) cs in loop step false false l.cells end let force l = let step = Src.find_active_step Step.nil l.srcs in update step l; l.log () let create ?(now = true) (cells, log) = let l = { stamp = Step.nil; srcs = Srcs.empty; cells; log } in update_srcs l; if now then force l; l let for_cell ?now c log = create ?now ([C.C c], fun () -> log (C.value c)) let destroy l = Srcs.iter (Src.rem_logr l) l.srcs let held : t list ref = ref [] let hold l = held := l :: !held let may_hold = function None -> () | Some l -> hold l let unhold_all () = List.iter destroy !held; held := [] end and Step : sig type t val create : unit -> t val nil : t val delayed : t val srcs : t -> Srcs.t val add_src : t -> Src.t -> unit val add_delayed : t -> Src.t -> unit val add_cleanup : t -> (unit -> unit) -> unit val execute : t -> unit val execute_delayed : Srcs.t -> unit end = struct type t = { mutable srcs : Srcs.t; (* sources part of the update step *) mutable delayed : Srcs.t; (* sources for delayed cells *) mutable cleanup : (unit -> unit) list (* for reseting events to None *) } let _create srcs = { srcs; delayed = Srcs.empty; cleanup = [] } let create () = _create Srcs.empty let nil = create () let delayed = create () let srcs step = step.srcs let add_src step src = step.srcs <- Srcs.add src step.srcs let add_delayed step src = step.delayed <- Srcs.add src step.delayed let add_cleanup step clean = step.cleanup <- clean :: step.cleanup let cleanup step = List.iter (fun f -> f ()) step.cleanup; step.cleanup <- [] let already_executed () = invalid_arg "step already executed" let rec execute_delayed srcs = let update_delayed_src ds (Src.V s) = let c = Src.cell s in C.update delayed c; C.set_stamp c ds; in let ds = _create srcs in delayed.srcs <- srcs; Srcs.iter (update_delayed_src ds) srcs; execute ds and execute step = let update_src_logs src = List.iter (Logr.update step) (Src.logrs src) in Srcs.iter update_src_logs step.srcs; Srcs.iter Src.reset_stamp step.srcs; cleanup step; add_cleanup step already_executed; (* error further executes *) match Srcs.is_empty step.delayed with | true -> () | false -> execute_delayed step.delayed end (* High-level interface *) type 'a signal = 'a C.t type 'a event = 'a option C.t (* Signal and event definition always have the same structure. let combinator ... = let update step self = C.update step ... if C.srcs_changed ... then C.set_srcs self ... if C.value_changed ... then C.set_{instant,value} self ... in let srcs = ... let step = Src.find_active_step Step.nil srcs in let () = C.update step ... in let srcs = ... let init = C.create .... In [update], update dependencies. If dependencies sources changed update the cell's sources, if dependencies values changed update the cell's value. To create the cell. Get the dependency sources. Find the update step going on (will be Step.nil if there is none). Update the dependencies with the step. Get the sources again (they may have changed) and the needed values to create the cell. XXX it would be nice to see if we can simply invoke [update] for init, possibly with a special Step.init step on Step.nil. *) module E = struct type 'a t = 'a event type 'a send = ?step:Step.t -> 'a -> unit let obs = Logr.obs_cell let log ?now e f = let wrap = function None -> () | Some v -> f v in Some (Logr.for_cell ?now e wrap) let create () = let src = Src.create None in let send ?step v = let step, exec = match step with | None -> Step.create (), true | Some step -> step, false in C.set_stamp (Src.cell src) step; C.set_instant step (Src.cell src) (Some v); Step.add_src step (Src.untyped src); if exec then Step.execute step in (Src.cell src), send let value = C.up_to_date_value let never = (* XXX *) Obj.magic @@ C.const None let bind e f = let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let current = match C.value e with None -> never | Some curr -> f curr in let current = ref current in let update step self = C.update step e; match C.value e with | None -> C.update step !current; if C.(srcs_changed e || srcs_changed !current) then C.set_srcs self (Srcs.union (C.srcs e) (C.srcs !current)); C.set_instant step self (C.value !current) | Some curr -> current := f curr; C.update step !current; C.set_srcs self (Srcs.union (C.srcs e) (C.srcs !current)); C.set_instant step self (C.value !current) in let step = Src.find_active_step step (C.srcs !current) in let () = C.update step !current in let srcs = Srcs.union (C.srcs e) (C.srcs !current) in let init = C.value !current in C.create_instant ~step ~srcs init ~update let join ee = bind ee (fun e -> e) let swap es = let step = Src.find_active_step Step.nil (C.srcs es) in let () = C.update step es in let current = ref (C.value es) in let update step self = C.update step es; begin match C.value_changed es with | false -> C.update step !current; if C.(srcs_changed es || srcs_changed !current) then C.set_srcs self (Srcs.union (C.srcs es) (C.srcs !current)) | true -> current := C.value es; C.update step !current; C.set_srcs self (Srcs.union (C.srcs es) (C.srcs !current)); end; C.set_instant step self (C.value !current) in let step = Src.find_active_step step (C.srcs !current) in let () = C.update step !current in let srcs = Srcs.union (C.srcs es) (C.srcs !current) in let init = C.value !current in C.create_instant ~step ~srcs init ~update let map f e = let map f = function None -> None | Some v -> Some (f v) in let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); C.set_instant step self (map f (C.value e)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in C.create_instant ~step ~srcs:(C.srcs e) (map f (C.value e)) ~update let stamp e v = let stamp = function None -> None | Some _ -> Some v in let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); C.set_instant step self (stamp (C.value e)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = stamp (C.value e) in C.create_instant ~step ~srcs:(C.srcs e) init ~update let filter f e = let filter f = function | None -> None | Some v as occ when f v -> occ | Some _ -> None in let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); C.set_instant step self (filter f (C.value e)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = filter f (C.value e) in C.create_instant ~step ~srcs:(C.srcs e) init ~update let filter_map f e = let filter_map f = function None -> None | Some v -> f v in let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); C.set_instant step self (filter_map f (C.value e)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = filter_map f (C.value e) in C.create_instant ~step ~srcs:(C.srcs e) init ~update let select es = let add_srcs acc e = Srcs.union acc (C.srcs e) in let or_srcs_changed acc e = acc || C.srcs_changed e in let update step self = List.iter (C.update step) es; let srcs_changed = List.fold_left or_srcs_changed false es in if srcs_changed then C.set_srcs self (List.fold_left add_srcs Srcs.empty es); let v = match List.find (fun e -> C.value e <> None) es with | exception Not_found -> None | e -> C.value e in C.set_instant step self v in let find_step step e = Src.find_active_step step (C.srcs e) in let step = List.fold_left find_step Step.nil es in let () = List.iter (C.update step) es in let init = match List.find (fun e -> C.value e <> None) es with | exception Not_found -> None | e -> C.value e in let srcs = List.fold_left add_srcs Srcs.empty es in C.create_instant ~step ~srcs init ~update let accum acc e = let acc = ref acc in let accum = function None -> None | Some f -> acc := f !acc; Some !acc in let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); C.set_instant step self (accum (C.value e)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = accum (C.value e) in C.create_instant ~step ~srcs:(C.srcs e) init ~update let until ?(limit = false) ~next e = let nop step self = () in let update step self = C.(update step next; update step e); match C.value next with | None -> if C.(srcs_changed next || srcs_changed e) then C.set_srcs self (Srcs.union (C.srcs next) (C.srcs e)); C.set_instant step self (C.value e) | Some _ -> C.set_srcs self Srcs.empty; C.set_update self nop; C.set_instant step self (if limit then C.value e else None) in let step = Src.find_active_step Step.nil (C.srcs next) in let step = Src.find_active_step step (C.srcs e) in let () = C.(update step next; update step e) in match C.value next with | None -> let srcs = Srcs.union (C.srcs next) (C.srcs e) in C.create_instant ~step ~srcs (C.value e) ~update | Some _ -> let init = if limit then C.value e else None in C.create_instant ~step ~srcs:Srcs.empty init ~update:nop let follow e ~on = (* FIXME rewrite combinators with this style. FIXME determine why we don't simply call update for init in general *) let deps_srcs e on = Srcs.union (C.srcs e) (C.srcs on) in let deps_srcs_changed e on = C.(srcs_changed e || srcs_changed on) in let update_deps step e on = C.(update step e; update step on) in let follow e on = match e with Some _ as o when on -> o | _ -> None in let update step self = update_deps step e on; if deps_srcs_changed e on then C.set_srcs self (deps_srcs e on); C.set_instant step self (follow (C.value e) (C.value on)) in let step = Src.find_active_step Step.nil (C.srcs e) in let step = Src.find_active_step step (C.srcs on) in let () = update_deps step e on in let init = follow (C.value e) (C.value on) in C.create_instant ~step ~srcs:(deps_srcs e on) init ~update let defer e = C.defer None e let fix ef = C.fix None ef module Option = struct let on_some e = filter_map (fun x -> x) e let some e = map (fun v -> Some v) e let value e ~default = let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); let occ = match C.value e with | None -> None | Some (Some _ as v) -> v | Some None -> C.update step default; Some (C.value default) in C.set_instant step self occ in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e; C.update step default in let init = match C.value e with | None -> None | Some (Some _ as v) -> v | Some None -> Some (C.value default) in C.create_instant ~step ~srcs:(C.srcs e) init ~update let get e = map (function Some v -> v | None -> invalid_arg "option is None") e let bind e f = map (function None -> None | Some v -> f v) e let join e = map (function Some (Some _ as o) -> o | _ -> None) e let is_none e = map (function None -> true | Some _ -> false) e let is_some e = map (function None -> false | Some _ -> true) e let map f e = map (function None -> None | Some v -> Some (f v)) e end module Pair = struct let fst e = map fst e let snd e = map snd e let v e0 e1 = let update step self = C.(update step e0; update step e1); if C.(srcs_changed e0 || srcs_changed e1) then C.set_srcs self (Srcs.union (C.srcs e0) (C.srcs e1)); let occ = match C.value e0, C.value e1 with | Some v0, Some v1 -> Some (v0, v1) | _ -> None in C.set_instant step self occ in let step = Src.find_active_step Step.nil (C.srcs e0) in let step = Src.find_active_step step (C.srcs e1) in let srcs = Srcs.union (C.srcs e0) (C.srcs e1) in let init = match C.value e0, C.value e1 with | Some v0, Some v1 -> Some (v0, v1) | _ -> None in C.create_instant ~step ~srcs init ~update end let dump_src_ids = C.dump_src_ids end module S = struct type 'a t = 'a signal type 'a set = ?step:Step.t -> 'a -> unit let log = Logr.for_cell let obs = Logr.obs_cell let eq = C.eq let with_eq = C.with_eq let create ?eq v = let src = Src.create ?eq v in let set ?step v = let step, exec = match step with | None -> Step.create (), true | Some step -> step, false in let cell = Src.cell src in if C.src_update step cell v then Step.add_src step (Src.untyped src); if exec then Step.execute step in Src.cell src, set let value = C.up_to_date_value let rough_value = C.value let const = C.const let bind v f = let step = Src.find_active_step Step.nil (C.srcs v) in let () = C.update step v in let current = ref (f (C.value v)) in let update step self = C.update step v; match C.value_changed v with | false -> C.update step !current; if C.(srcs_changed v || srcs_changed !current) then C.set_srcs self (Srcs.union (C.srcs v) (C.srcs !current)); if C.value_changed !current then C.set_value self (C.value !current) | true -> current := f (C.value v); C.update step !current; C.set_eq self (C.eq !current); C.set_srcs self (Srcs.union (C.srcs v) (C.srcs !current)); C.set_value self (C.value !current) in let step = Src.find_active_step step (C.srcs !current) in let () = C.update step !current in let srcs = Srcs.union (C.srcs v) (C.srcs !current) in let init = C.value !current in C.create ~eq:(C.eq !current) ~step ~srcs init ~update let hold ?eq i e = let update step self = C.update step e; if C.(srcs_changed e) then C.set_srcs self (C.srcs e); match C.value e with | None -> () | Some v -> C.set_value self v in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = match C.value e with None -> i | Some v -> v in C.create ?eq ~step ~srcs:(C.srcs e) init ~update let join ss = bind ss (fun s -> s) let swap s se = join (hold ~eq:( == ) s se) let changes s = let update step self = C.update step s; if C.srcs_changed s then C.set_srcs self (C.srcs s); if C.value_changed s then C.set_instant step self (Some (C.value s)) in let step = Src.find_active_step Step.nil (C.srcs s) in let () = C.update step s in (* NB: 0 - dt doesn't exist so this is always None *) C.create_instant ~step ~srcs:(C.srcs s) None ~update let sample s ~on f = let update step self = C.(update step on; update step s); if C.(srcs_changed on || srcs_changed s) then C.set_srcs self (Srcs.union (C.srcs s) (C.srcs on)); match C.value on with | None -> () | Some v -> C.set_instant step self (Some (f (C.value s) v)) in let step = Src.find_active_step Step.nil (C.srcs s) in let step = Src.find_active_step step (C.srcs on) in let () = C.(update step on; update step s) in let srcs = Srcs.union (C.srcs s) (C.srcs on) in let init = match C.value on with | None -> None | Some v -> Some (f (C.value s) v) in C.create_instant ~step ~srcs init ~update let sample_filter s ~on f = E.Option.on_some (sample s ~on f) let snapshot s ~on = sample s ~on (fun v _ -> v) let map ?eq f v = let update step self = C.update step v; if C.srcs_changed v then C.set_srcs self (C.srcs v); if C.value_changed v then C.set_value self (f (C.value v)) in let step = Src.find_active_step Step.nil (C.srcs v) in let () = C.update step v in C.create ?eq ~step ~srcs:(C.srcs v) (f (C.value v)) ~update let app ?eq f v = let update step self = C.(update step f; update step v); if C.(srcs_changed f || srcs_changed v) then C.set_srcs self (Srcs.union (C.srcs f) (C.srcs v)); if C.(value_changed f || value_changed v) then C.set_value self ((C.value f) (C.value v)) in let step = Src.find_active_step Step.nil (C.srcs f) in let step = Src.find_active_step step (C.srcs v) in let () = C.update step f; C.update step v in let srcs = Srcs.union (C.srcs f) (C.srcs v) in let init = (C.value f) (C.value v) in C.create ?eq ~step ~srcs init ~update let accum ?eq i e = hold ?eq i (E.accum i e) let until ?(limit = false) ?init ~next s = let nop step self = () in let update step self = C.(update step next; update step s); match C.value next with | None -> if C.(srcs_changed next || srcs_changed s) then C.set_srcs self (Srcs.union (C.srcs next) (C.srcs s)); C.set_value self (C.value s) | Some _ -> C.set_srcs self Srcs.empty; C.set_update self nop; if limit then C.set_value self (C.value s) else () in let step = Src.find_active_step Step.nil (C.srcs next) in let step = Src.find_active_step step (C.srcs s) in let () = C.(update step next; update step s) in match C.value next with | None -> let srcs = Srcs.union (C.srcs next) (C.srcs s) in C.create ~eq:(eq s) ~step ~srcs (C.value s) ~update | Some _ -> let init = match init with None -> C.value s | Some i -> i in C.create ~eq:(eq s) ~step ~srcs:Srcs.empty init ~update:nop let follow ?init s ~on = let deps_srcs s on = Srcs.union (C.srcs s) (C.srcs on) in let deps_srcs_changed s on = C.(srcs_changed s || srcs_changed on) in let update_deps step s on = C.(update step s; update step on) in let update step self = update_deps step s on; if deps_srcs_changed s on then C.set_srcs self (deps_srcs s on); if C.value on then C.set_value self (C.value s) in let step = Src.find_active_step Step.nil (C.srcs s) in let step = Src.find_active_step step (C.srcs on) in let () = update_deps step s on in let init = match init with None -> (C.value s) | Some i -> i in C.create ~eq:(eq s) ~step ~srcs:(deps_srcs s on) init ~update let delay = C.delay let defer ?init s = let init = match init with | Some init -> init | None -> let step = Src.find_active_step Step.nil (C.srcs s) in let () = C.update step s in C.value s in C.defer init s let fix = C.fix let l1 ?eq f x = map ?eq f x let l2 ?eq f x y = let update step self = C.(update step x; update step y); if C.(srcs_changed x || srcs_changed y) then C.set_srcs self (Srcs.union (C.srcs x) (C.srcs y)); if C.(value_changed x || value_changed y) then C.set_value self (f (C.value x) (C.value y)) in let step = Src.find_active_step Step.nil (C.srcs x) in let step = Src.find_active_step step (C.srcs y) in let () = C.(update step x; update step y) in let srcs = Srcs.union (C.srcs x) (C.srcs y) in let init = f (C.value x) (C.value y) in C.create ?eq ~step ~srcs init ~update let l3 ?eq f x y z = let srcs_union x y z = Srcs.union (C.srcs x) (Srcs.union (C.srcs y) (C.srcs z)) in let update step self = C.(update step x; update step y; update step z); if C.(srcs_changed x || srcs_changed y || srcs_changed z) then C.set_srcs self (srcs_union x y z); if C.(value_changed x || value_changed y || value_changed z) then C.set_value self (f (C.value x) (C.value y) (C.value z)) in let step = Src.find_active_step Step.nil (C.srcs x) in let step = Src.find_active_step step (C.srcs y) in let step = Src.find_active_step step (C.srcs z) in let () = C.(update step x; update step y; update step z) in let srcs = srcs_union x y z in let init = f (C.value x) (C.value y) (C.value z) in C.create ?eq ~step ~srcs init ~update module Bool = struct let eq : bool -> bool -> bool = ( = ) let false' = const false let true' = const true let not s = map ~eq not s let ( && ) = l2 ( && ) let ( || ) = l2 ( || ) let edge s = changes s let edge_detect edge s = let update step self = C.update step s; if C.srcs_changed s then C.set_srcs self (C.srcs s); if Stdlib.( && ) (C.value_changed s) (C.value s = edge) then C.set_instant step self (Some ()) in let step = Src.find_active_step Step.nil (C.srcs s) in let () = C.update step s in C.create_instant ~step ~srcs:(C.srcs s) None ~update let rise s = edge_detect true s let fall s = edge_detect false s let flip ~init e = let update step self = C.update step e; if C.srcs_changed e then C.set_srcs self (C.srcs e); match C.value e with | None -> () | Some _ -> C.set_value self (Stdlib.not (C.value self)) in let step = Src.find_active_step Step.nil (C.srcs e) in let () = C.update step e in let init = match C.value e with | Some _ -> Stdlib.not init | None -> init in C.create ~eq ~step ~srcs:(C.srcs e) init ~update end module Option = struct let _eq eq = fun v0 v1 -> match v0, v1 with | Some v0, Some v1 -> eq v0 v1 | None, None -> true | _, _ -> false let none = (* XXX *) Obj.magic @@ (const None) let some s = map ~eq:(_eq (eq s)) (fun v -> Some v) s let hold_value i s = let update step self = C.update step s; if (C.srcs_changed s) then C.set_srcs self (C.srcs s); match C.value s with None -> () | Some v -> C.set_value self v in let eq v v' = C.eq s (Some v) (Some v') in let step = Src.find_active_step Step.nil (C.srcs s) in let () = C.update step s in let init = match C.value s with None -> i | Some v -> v in C.create ~eq ~step ~srcs:(C.srcs s) init ~update let value s ~default = let update step self = C.update step default; C.update step s; if C.(srcs_changed default || C.srcs_changed s) then C.set_srcs self (Srcs.union (C.srcs default) (C.srcs s)); if (C.value_changed default || C.value_changed s) then match C.value s with | None -> C.set_value self (C.value default) | Some v -> C.set_value self v in let step = Src.find_active_step Step.nil (C.srcs default) in let step = Src.find_active_step step (C.srcs s) in let () = C.(update step default; update step s) in let init = match C.value s with None -> C.value default | Some v -> v in let srcs = Srcs.union (C.srcs default) (C.srcs s) in C.create ~eq:(eq default) ~step ~srcs init ~update let get ?eq s = map ?eq (function Some v -> v | None -> invalid_arg "option is None") s let bind ?eq s f = map ?eq (function None -> None | Some v -> f v) s let join ?eq s = map ?eq (function Some (Some _ as o) -> o | _ -> None) s let is_none s = map ~eq:Bool.eq (function None -> true | Some _ -> false) s let is_some s = map ~eq:Bool.eq (function None -> false | Some _ -> true) s let map ?eq f s = map ?eq (function None -> None | Some v -> Some (f v)) s let eq = _eq end module Pair = struct let fst ?eq s = map ?eq fst s let snd ?eq s = map ?eq snd s let v s0 s1 = l2 (fun x y -> (x, y)) s0 s1 end let dump_src_ids = C.dump_src_ids end