package nlopt-ocaml
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
OCaml bindings to the NLOpt optimization library
Install
dune-project
Dependency
Authors
Maintainers
Sources
release-0.5.1.tar.gz
sha256=3aba7bdd7154aacbeeb806da7f6dad2eacbae0eb32d518f52af96b4505b60928
md5=cae1d5923a12ca414aacc39bb7a8c360
doc/nlopt/Nlopt/index.html
Module Nlopt
OCaml interface to the NLopt optimization library
val direct : [ `Global ] algorithmval direct_l : [ `Global | `Ineq ] algorithmval direct_l_rand : [ `Global ] algorithmval direct_noscal : [ `Global ] algorithmval direct_l_noscal : [ `Global ] algorithmval direct_l_rand_noscal : [ `Global ] algorithmval orig_direct : [ `Global | `Ineq ] algorithmval orig_direct_l : [ `Global ] algorithmval stogo : [ `Global | `Grad ] algorithmval stogo_rand : [ `Global | `Grad ] algorithmval lbfgs_nocedal : [ `Local | `Grad ] algorithmval lbfgs : [ `Local | `Grad ] algorithmval praxis : [ `Local ] algorithmval var1 : [ `Local | `Grad ] algorithmval var2 : [ `Local | `Grad ] algorithmval tnewton : [ `Local | `Grad ] algorithmval tnewton_restart : [ `Local | `Grad ] algorithmval tnewton_precond : [ `Local | `Grad ] algorithmval tnewton_precond_restart : [ `Local | `Grad ] algorithmval crs2_lm : [ `Global ] algorithmval mma : [ `Local | `Grad | `Ineq ] algorithmval cobyla : [ `Local | `Ineq | `Eq ] algorithmval newuoa : [ `Local ] algorithmval newuoa_bound : [ `Local ] algorithmval neldermead : [ `Local ] algorithmval sbplx : [ `Local ] algorithmval bobyqa : [ `Local ] algorithmval isres : [ `Global | `Ineq | `Eq ] algorithmval auglag : [ `Subsidiary | `Ineq | `Eq ] algorithmval auglag_eq : [ `Subsidiary | `Ineq | `Eq ] algorithmval mlsl : [ `Subsidiary | `Global ] algorithmval mlsl_lds : [ `Subsidiary | `Global ] algorithmval slsqp : [ `Local | `Grad | `Ineq | `Eq ] algorithmval set_min_objective :
'a t ->
(float array -> float array option -> float) ->
unitval set_max_objective :
'a t ->
(float array -> float array option -> float) ->
unitval optimize :
'a t ->
float array ->
[> `Success
| `Stopval_reached
| `Stopval_reached
| `Ftol_reached
| `Xtol_reached
| `Maxeval_reached
| `Maxtime_reached ]
* float array
* floatoptimize opt x performs the optimization using x as an initial guess (it must be of size get_dimension opt). Returns a triple (result, xopt, fopt) where xopt is the optimzed value and fopt is the function value at that optimum.
val get_dimension : 'a t -> intBound constraints
val set_lower_bounds : 'a t -> float array -> unitval get_lower_bounds : 'a t -> float arrayval set_upper_bounds : 'a t -> float array -> unitval get_upper_bounds : 'a t -> float arrayNonlinear constraints
val add_inequality_constraint :
[> `Ineq ] t ->
(float array -> float array option -> float) ->
float ->
unitval add_equality_constraint :
[> `Eq ] t ->
(float array -> float array option -> float) ->
float ->
unitStopping criteria
val set_stopval : 'a t -> float -> unitval get_stopval : 'a t -> floatval set_ftol_rel : 'a t -> float -> unitval get_ftol_rel : 'a t -> floatval set_ftol_abs : 'a t -> float -> unitval get_ftol_abs : 'a t -> floatval set_xtol_rel : 'a t -> float -> unitval get_xtol_rel : 'a t -> floatval set_xtol_abs : 'a t -> float array -> unitval get_xtol_abs : 'a t -> float arrayval set_maxeval : 'a t -> int -> unitval get_maxeval : 'a t -> intval set_maxtime : 'a t -> float -> unitval get_maxtime : 'a t -> floatLocal/subsidiary optimization algorithm
Initial step size
val set_initial_step : 'a t -> float array -> unitval get_initial_step : 'a t -> float array -> float arrayStochastic population
val set_population : 'a t -> int -> unitVector storage for limited-memory quasi-Newton algorithms
val set_vector_storage : 'a t -> int -> unitval get_vector_storage : 'a t -> intUtility functions
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page