package neural_nets_lib
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
A from-scratch Deep Learning framework with an optimizing compiler, shape inference, concise syntax
Install
dune-project
Dependency
Authors
Maintainers
Sources
0.6.1.2.tar.gz
md5=529f0921963a6eee0194159a9c0fea41
sha512=fc16e8b6cd72cb2ae18277b3727d065fa6c1d137e3187f9586fb0bfe7edeb45597cb58f389e79c20d7e3ae80661e6f9f20e0b95dcbbf27ee5688bcc571d395dd
doc/neural_nets_lib.datasets/Datasets/Half_moons/index.html
Module Datasets.Half_moonsSource
Half moons synthetic dataset generation
Source
val generate_with_kind :
(float, 'a) Stdlib__Bigarray.kind ->
?config:Config.t ->
len:int ->
unit ->
(float, 'a, Bigarray.c_layout) Bigarray.Genarray.t
* (float, 'a, Bigarray.c_layout) Bigarray.Genarray.tInternal helper function to generate half moons with specified precision.
Source
val generate :
?config:Config.t ->
len:int ->
unit ->
(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.tGenerate the half moons dataset with the specified parameters.
Source
val generate_single_prec :
?config:Config.t ->
len:int ->
unit ->
(float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Genarray.tGenerate the half moons dataset with single precision floats.
Generate half moons dataset using the old array-based approach for compatibility. This function is deprecated and provided for backwards compatibility.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>