package neural_nets_lib
A from-scratch Deep Learning framework with an optimizing compiler, shape inference, concise syntax
Install
dune-project
Dependency
Authors
Maintainers
Sources
0.6.0.4.tar.gz
md5=5beaaa0b377bec3badffffbf9f4dec4a
sha512=a37a67452746143f0f5ba2e81f98d6fed31fb4397e0a85f4a35aedc805b4e0405ea89d465c6f80941c465fb61d5d6119806cb73b5c5ead925797eb80d19c5ade
doc/neural_nets_lib.datasets/Datasets/Half_moons/index.html
Module Datasets.Half_moons
Source
Half moons synthetic dataset generation
Source
val generate_with_kind :
(float, 'a) Stdlib__Bigarray.kind ->
?config:Config.t ->
len:int ->
unit ->
(float, 'a, Bigarray.c_layout) Bigarray.Genarray.t
* (float, 'a, Bigarray.c_layout) Bigarray.Genarray.t
Internal helper function to generate half moons with specified precision.
Source
val generate :
?config:Config.t ->
len:int ->
unit ->
(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
Generate the half moons dataset with the specified parameters.
Source
val generate_single_prec :
?config:Config.t ->
len:int ->
unit ->
(float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Genarray.t
Generate the half moons dataset with single precision floats.
Generate half moons dataset using the old array-based approach for compatibility. This function is deprecated and provided for backwards compatibility.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>