Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
Computational primitives for neural networks, integrating Tensor
with Assignments
.
module Asgns = Arrayjit.Assignments
module Idx = Arrayjit.Indexing
module At : sig ... end
module Initial_NTDSL : sig ... end
module Initial_TDSL : sig ... end
val add :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val sub :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val mul :
Shape.compose_type ->
op_asn:
(v:Tensor.tn ->
t1:Tensor.t ->
t2:Tensor.t ->
projections:Tensor.projections Base.Lazy.t ->
Tensor.asgns) ->
label:Base.string Base.list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val pointmul :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val matmul :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val einsum :
?label:Base.string list ->
Base.string ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
Similar to the explicit mode of numpy.einsum
, the binary variant. Can compute various forms of matrix multiplication, inner and outer products, etc.
Note that "a,b->c"
from numpy
is "a;b=>c"
in OCANNL, since "->"
is used to separate the input and the output axes.
val outer_sum :
?label:Base.string list ->
Base.string ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
Like einsum
, but adds instead than multiplying the resulting values.
val einsum1 :
?label:Base.string list ->
Base.string ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t
Similar to the explicit mode of numpy.einsum
, the unary variant. Can permute axes, extract diagonals, compute traces etc.
Note that "a->c"
from numpy
is "a=>c"
in OCANNL, since "->"
is used to separate the input and the output axes.
val relu :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t
module NDO_without_pow : sig ... end
val pointpow :
?label:Base.string Base.list ->
grad_spec:Tensor.grad_spec ->
Base.float ->
Tensor.t ->
Tensor.t
module NDO_without_div : sig ... end
val pointdiv :
?label:Base.string Base.list ->
grad_spec:Tensor.grad_spec ->
Tensor.t ->
Tensor.t ->
Tensor.t
val range :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
?axis_label:Base.string ->
Base.Int.t ->
Tensor.t
val range_of_shape :
?label:Base.string list ->
?grad_spec:Tensor.grad_spec ->
?batch_dims:Base.Int.t Base.List.t ->
?input_dims:Base.Int.t Base.List.t ->
?output_dims:Base.Int.t Base.List.t ->
?batch_axes:(Base.string * Base.Int.t) Base.List.t ->
?input_axes:(Base.string * Base.Int.t) Base.List.t ->
?output_axes:(Base.string * Base.Int.t) Base.List.t ->
unit ->
Tensor.t
A stop_gradient
is an identity in the forward pass and a no-op in the backprop pass.
val slice :
?label:Base.string list ->
grad_spec:Tensor.grad_spec ->
Idx.static_symbol ->
Tensor.t ->
Tensor.t
val embed_symbol :
?label:Base.string list ->
Arrayjit.Indexing.static_symbol ->
Tensor.t
module DO : sig ... end
module NDO : sig ... end
module TDSL : sig ... end
module NTDSL : sig ... end