package lrgrep
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/valmari/Valmari/Minimize_with_custom_decomposition/argument-1-In/index.html
Parameter Minimize_with_custom_decomposition.In
include INPUT
include DFA
val states : states Fix.Indexing.cardinalThe set of DFA nodes
val transitions : transitions Fix.Indexing.cardinalThe set of DFA transitions
val label : transitions Fix.Indexing.index -> labelGet the label associated with a transition
val source : transitions Fix.Indexing.index -> states Fix.Indexing.indexGet the source state of the transition
val target : transitions Fix.Indexing.index -> states Fix.Indexing.indexGet the target state of the transition
val initials : (states Fix.Indexing.index -> unit) -> unitIterate on initial states
val finals : (states Fix.Indexing.index -> unit) -> unitIterate final states
val refinements :
((add:(states Fix.Indexing.index -> unit) -> unit) -> unit) ->
unitThe minimization algorithms operate on a DFA plus an optional initial refinement (state that must be distinguished, because of some external properties not observable from the labelled transitions alone).
If no refinements are needed, the minimum implementation is just: let refinements ~refine:_ = ()
Otherwise, the refinements function should invoke the refine function for each set of equivalent states and call the iter for each equivalent state.
E.g if our automata has 5 states, and states 2 and 3 have tag A while states 4 and 5 have tag B, we will do:
let refinements ~refine = refine (fun ~iter -> iter 2; 3); refine (fun ~iter -> iter 4; 5)
val decomposition :
((add:(transitions Fix.Indexing.index -> unit) -> unit) -> unit) ->
unit