package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/utils/misc.ml.html
Source file misc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638open Fix.Indexing module Positive = Const(struct let cardinal = max_int end) let compare_ignore _ _ = 0 let compare_pair fst snd (x1, y1) (x2, y2) = match fst x1 x2 with | 0 -> snd y1 y2 | n -> n let compare_fst f = compare_pair f compare_ignore let compare_snd f = compare_pair compare_ignore f (** [array_last arr] returns the [Some x] where [x] is the last element of the array, or [None] if the array is empty *) let array_last arr = match Array.length arr with | 0 -> None | n -> Some (arr.(n - 1)) (** [array_findi f i arr] finds the smallest [j >= i] such that [f j arr.(j) = true], or raises [Not_found] if there is no such [j] *) let rec array_findi f i arr = if i >= Array.length arr then raise Not_found else if f i arr.(i) then i else array_findi f (i + 1) arr let array_split a = (Array.map fst a, Array.map snd a) let array_compare cmp a1 a2 = let len = Array.length a1 in let c = ref (Int.compare len (Array.length a2)) in let i = ref 0 in while !c = 0 && !i < len do c := cmp a1.(!i) a2.(!i); incr i done; !c let array_equal cmp a1 a2 = let len = Array.length a1 in let b = ref (Int.equal len (Array.length a2)) in let i = ref 0 in while !b && !i < len do b := cmp a1.(!i) a2.(!i); incr i done; !b (** [group ~compare ~group list] Group togethers the elements of [list] that are equivalent according to [compare], using the [group] function *) let group_by ~(compare:'a -> 'a -> int) ~(group:'a -> 'a list -> 'b) (list : 'a list) : 'b list = match List.sort compare list with | [] -> [] | key :: rest -> let rec loop acc ks key = function | [] -> group key ks :: acc | key' :: rest -> if compare key key' = 0 then loop acc (key' :: ks) key rest else loop (group key ks :: acc) [] key' rest in loop [] [] key rest (** Merge consecutive elements [(a, b)] of list that have the same b, according to [equal]. *) let merge_group ~(equal:'b -> 'b -> bool) ~(group:'b -> 'a list -> 'c) : ('a * 'b) list -> 'c list = function | [] -> [] | (s1, k1) :: rest -> let rec loop acc ss key = function | [] -> group key ss :: acc | (s, key') :: rest -> if equal key key' then loop acc (s :: ss) key rest else loop (group key ss :: acc) [s] key' rest in loop [] [s1] k1 rest (** Convenient alias for [IndexSet] *) type 'a indexset = 'a IndexSet.t (** Convenient alias for [IndexMap] *) type ('n, 'a) indexmap = ('n, 'a) IndexMap.t (** A function for consing a value when using Map.update *) let cons_update x = function | None -> Some [x] | Some xs -> Some (x :: xs) (** A function for adding an element to a set when using Map.update *) let add_update x = function | None -> Some (IndexSet.singleton x) | Some y -> Some (IndexSet.add x y) (** A function for unioning sets when using Map.update *) let union_update x = function | None -> Some x | Some y -> Some (IndexSet.union x y) (** Optimize stdlib's (@) to avoid copying the lhs when the rhs is empty *) let (@) l1 l2 = match l1, l2 with | [], l | l, [] -> l | l1, l2 -> l1 @ l2 (** [array_cons a i v] cons the value [v] to the list [a.(i)], where a is an array of list. *) let array_cons arr index value = arr.(index) <- value :: arr.(index) (** [index_fold n a f] fold [f] with accumulator [a] over all indices in the finite set of cardinal [n] *) let index_fold n a f = let a = ref a in Index.iter n (fun i -> a := f i !a); !a (** Vector get *) let (.:()) = Vector.get (** Vector set *) let (.:()<-) = Vector.set (** Vector update *) let (.@()<-) v i f = v.:(i) <- f v.:(i) (** [tabulate_finset n f] tabulates function [f] over all indices in the finite set of cardinal [n] *) let tabulate_finset n f = Vector.get (Vector.init n f) let relation_reverse' n f = let rev = Vector.make n IndexSet.empty in Index.rev_iter n (fun src -> IndexSet.rev_iter (fun tgt -> rev.@(tgt) <- IndexSet.add src) (f src) ); rev let relation_reverse n rel = let rev = Vector.make n IndexSet.empty in Vector.rev_iteri (fun src tgts -> IndexSet.rev_iter (fun tgt -> rev.@(tgt) <- IndexSet.add src) tgts ) rel; rev let fix_relation (relation : ('n, 'n indexset) vector) (values : ('n, 'a) vector) ~(propagate : 'n index -> 'a -> 'n index -> 'a -> 'a) = let n = Vector.length values in let marked = ref true in let marks = Boolvector.make n true in let update i = if Boolvector.test marks i then ( Boolvector.clear marks i; let value = values.:(i) in IndexSet.rev_iter (fun j -> let value' = values.:(j) in let value'' = propagate i value j value' in if value' != value'' then ( values.:(j) <- value''; Boolvector.set marks j; marked := true ) ) relation.:(i) ) in while !marked do marked := false; Index.rev_iter n update done let close_relation ?reverse rel = let rev = match reverse with | Some rev -> rev | None -> relation_reverse (Vector.length rel) rel in fix_relation rev rel ~propagate:(fun _ v _ v' -> IndexSet.union v v') (** Equality on indices *) let equal_index = (Int.equal : int -> int -> bool :> 'a index -> 'a index -> bool) (** Comparison of indices *) let compare_index = (Int.compare : int -> int -> int :> 'a index -> 'a index -> int) (** [string_concat_map ~wrap:(pre, post) sep f xs] returns a string made of the concatenation of the elements of [xs] printed by function [f] and separated by [sep]. [wrap] is optional, but if provided, pre is prepended to the result and [post] is appended. *) let string_concat_map ?wrap sep f xs = let result = String.concat sep (List.map f xs) in match wrap with | None -> result | Some (pre, post) -> pre ^ result ^ post let string_of_index = (string_of_int : int -> string :> _ index -> string) let string_of_indexset ?(index=string_of_index) xs = string_concat_map ~wrap:("[", "]") ";" index (IndexSet.elements xs) (** Prepend an element to a list reference *) let push xs x = xs := x :: !xs (** Prepend elements to a list reference *) let pushs xs = function | [] -> () | x -> xs := x @ !xs (* [hash_list h list] returns a hash of [list] where individual elements are hashed using [h] *) let rec hash_list f = function | [] -> 7 | x :: xs -> Hashtbl.seeded_hash (hash_list f xs) (f x) (** Merge to ordered lists, keeping only one copy of elements occurring in both lists. (Duplicate elements in the same list are kept.) *) let rec merge_uniq cmp l1 l2 = match l1, l2 with | [], l2 -> l2 | l1, [] -> l1 | h1 :: t1, h2 :: t2 -> let c = cmp h1 h2 in if c = 0 then h1 :: merge_uniq cmp t1 t2 else if c < 0 then h1 :: merge_uniq cmp t1 l2 else h2 :: merge_uniq cmp l1 t2 (** List cons where the element to cons is optional *) let cons_option x xs = match x with | None -> xs | Some x -> x :: xs let cons_if c x xs = if c then x :: xs else xs (** Turns a index into a cmon document *) let cmon_index = (Cmon.int : int -> Cmon.t :> _ index -> Cmon.t) (** Turns a set of indices into a cmon document *) let cmon_indexset ?(index=cmon_index) xs = Cmon.list_map index (IndexSet.elements xs) let cmon_set_cardinal set = Cmon.constant ("{" ^ string_of_int (IndexSet.cardinal set) ^ " elements}") let cmon_pair f g (x, y) = Cmon.tuple [f x; g y] let cmon_option f = function | None -> Cmon.constant "None" | Some x -> Cmon.constructor "Some" (f x) (** Print a cmon document to a channel with sensible defaults *) let print_cmon oc cmon = PPrint.ToChannel.pretty 0.8 80 oc (Cmon.print cmon) let sort_and_merge compare merge l = let rec loop x xs = function | [] -> [merge x xs] | y :: ys -> if compare x y = 0 then loop x (y :: xs) ys else let xxs = merge x xs in xxs :: loop y [] ys in match List.sort compare l with | [] -> [] | x :: xs -> loop x [] xs let sort_and_merge_indexed compare l = let union_ix ix (_, ix') = IndexSet.union ix ix' in sort_and_merge (compare_fst compare) (fun (x, ix) rest -> (x, List.fold_left union_ix ix rest)) l let list_foralli f l = let rec loop i = function | [] -> true | x :: xs -> (f i x) && (loop (i + 1) xs) in loop 0 l let rec list_rev_iter f = function | x1 :: x2 :: x3 :: x4 :: xs -> list_rev_iter f xs; f x4; f x3; f x2; f x1 | [x1; x2; x3] -> f x3; f x2; f x1 | [x1; x2] -> f x2; f x1 | [x1] -> f x1 | [] -> () let rec list_drop n = function | _ :: xs when n > 0 -> list_drop (n - 1) xs | xs -> xs let rec list_take n = function | x :: xs when n > 0 -> x :: list_take (n - 1) xs | _ -> [] let rec fixpoint ?counter ~propagate todo = match !todo with | [] -> () | todo' -> Option.iter incr counter; todo := []; List.iter propagate todo'; fixpoint ?counter ~propagate todo let assert_equal_length v1 v2 = assert_equal_cardinal (Vector.length v1) (Vector.length v2) let bytes_match b i str = Bytes.length b >= i + String.length str && let exception Exit in match for j = 0 to String.length str - 1 do if Bytes.get b (i + j) <> String.get str j then raise Exit done with | () -> true | exception Exit -> false let verbosity_level = ref 0 let stopwatch_delta = let last = ref [] in fun level -> let rec visit = function | (level', _) :: acc when level' > level -> visit acc | [] -> 0.0, [] | (level', time) :: acc when level' = level -> (time, acc) | (_, time) :: _ as acc -> time, acc in let time = Sys.time () in let time', last' = visit !last in last := (level, time) :: last'; (time -. time') let stopwatch_counter = ref 0 let stopwatch_perfs = ref @@ match Sys.getenv_opt "STOPWATCH_PERF" with | None -> [] | Some list -> let steps = String.split_on_char ',' list in List.mapi (fun i step -> (i land 1 = 0), int_of_string step ) steps let stopwatch_perf_step i = match !stopwatch_perfs with | (_, j) :: _ as steps when j <= i -> let result = ref None in let rec loop = function | [] -> [] | (_, j) :: _ as rest when j > i -> rest | (_, j) :: rest when j < i -> loop rest | (result', _) :: rest -> result := Some result'; loop rest in stopwatch_perfs := loop steps; !result | _ -> None let stopwatch level fmt = if level <= !verbosity_level then ( let delta = stopwatch_delta level in incr stopwatch_counter; let perf_status = stopwatch_perf_step !stopwatch_counter in if perf_status = Some false then Perfctl.disable (); if delta < 10. then Printf.eprintf "[%03d: % 5.0fms]" !stopwatch_counter (delta *. 1000.) else Printf.eprintf "[%03d: % 5.01fs]" !stopwatch_counter delta; Printf.fprintf stderr "%s-> " (String.make level ' '); Printf.kfprintf (fun _ -> prerr_newline (); if perf_status = Some true then Perfctl.enable (); ) stderr fmt ) else Printf.ifprintf stderr fmt let rewrite_keywords f (pos : Lexing.position) str = let b = Bytes.of_string str in let l = Bytes.length b in let i = ref 0 in let pos_lnum = ref pos.pos_lnum in let pos_bol = ref pos.pos_bol in let nl () = pos_bol := pos.pos_cnum + !i; incr pos_lnum in let escape () = if !i < l && Bytes.get b !i = '\n' then (incr i; nl ()) else incr i in while !i < l do match Bytes.get b !i with | '\n' -> incr i; nl () | '\\' -> incr i; escape () (* Look for $ident(ident) *) | '$' -> let dollar = !i in incr i; let in_range a b c = a <= b && b <= c in let is_ident c = in_range 'a' c 'z' || in_range 'A' c 'Z' || in_range '0' c '9' || (c = '_') || (c = '\'') in while !i < l && is_ident (Bytes.get b !i) do incr i done; if !i < l && Bytes.get b !i = '(' then ( let lpar = !i in incr i; while !i < l && is_ident (Bytes.get b !i) do incr i done; if !i < l && Bytes.get b !i = ')' then ( let rpar = !i in let kw = Bytes.sub_string b dollar (lpar - dollar) in let arg = Bytes.sub_string b (lpar + 1) (rpar - lpar - 1) in let pos = {pos with pos_lnum = !pos_lnum; pos_bol = !pos_bol; pos_cnum = pos.pos_cnum + dollar} in if f pos kw arg then ( Bytes.set b dollar '_'; Bytes.set b lpar '_'; Bytes.set b rpar '_'; ) ) ) (* Skip strings *) | '"' -> incr i; while !i < l && let c = Bytes.get b !i in incr i; match c with | '"' -> false | '\n' -> nl (); true | '\\' -> escape (); true | _ -> true do () done | _ -> incr i done; Bytes.to_string b type 'a lazy_stream = { lvalue: 'a; lnext: 'a lazy_stream lazy_t; } let rec iterate x f = { lvalue = x; lnext = lazy (iterate (f x) f); } let iterate_vector v = Vector.init (Vector.length v) @@ fun x -> iterate (IndexSet.singleton x) (fun xs -> IndexSet.bind xs (Vector.get v)) let rec list_rev_mappend f xs acc = match xs with | [] -> acc | x :: xs -> list_rev_mappend f xs (f x :: acc) let list_is_empty = function | [] -> true | _ :: _ -> false let seq_singleton x () = Seq.Cons (x, Seq.empty) let rec seq_memoize s = let cache = ref None in fun () -> match !cache with | Some r -> r | None -> match s () with | Seq.Nil -> cache := Some Seq.Nil; Seq.Nil | Seq.Cons (x, xs) -> let s = Seq.Cons (x, seq_memoize xs) in cache := Some s; s let seq_mapi f s () = let rec seq_mapi f i s () = match s () with | Seq.Nil -> Seq.Nil | Seq.Cons (x, xs) -> Seq.Cons (f i x, seq_mapi f (i + 1) xs) in seq_mapi f 0 s () module Damerau_levenshtein = struct type cache = { mutable prev_prev: int array; mutable prev: int array; mutable curr: int array; } let make_cache () = { prev_prev = [||]; prev = [||]; curr = [||]; } let distance c ?(max=max_int) (s1 : string) (s2 : string) : int = let l1 = String.length s1 in let l2 = String.length s2 in (* Ensure s1 is the shorter string for better space usage *) let (l1, s1, l2, s2) = if l1 < l2 then (l1, s1, l2, s2) else (l2, s2, l1, s1) in (* Ensure temp rows of size at least (l1 + 1) *) let needed = l1 + 1 in if Array.length c.prev < needed then ( c.prev_prev <- Array.make needed 0; c.prev <- Array.make needed 0; c.curr <- Array.make needed 0; ); (* Initialize first row (prev) *) for i = 0 to l1 do c.prev.(i) <- i done; (* Fill the table row by row *) for j = 1 to l2 do let {prev_prev; prev; curr} = c in curr.(0) <- j; (* insertion cost *) for i = 1 to l1 do let c1 = s1.[i-1] in let c2 = s2.[j-1] in let cost = if c1 = c2 then 0 else 1 in let delete_cost = prev.(i) + 1 in let insert_cost = curr.(i-1) + 1 in let substitute_cost = prev.(i-1) + cost in let transpose_cost = if i > 1 && j > 1 && (let c1' = s1.[i-2] and c2' = s2.[j-2] in c1 = c2' && c2 = c1') then prev_prev.(i-2) + 1 else max_int in let actual = Int.min (Int.min delete_cost insert_cost) (Int.min substitute_cost transpose_cost) in ignore max; (*if actual > max then raise Exit; FIXME: implement early exit *) curr.(i) <- actual done; (* Swap: curr becomes prev for next iteration *) c.prev_prev <- prev; c.prev <- curr; c.curr <- prev_prev; done; c.prev.(l1) let filter_approx ~dist name seq = let cache = make_cache () in let filter (k, v) = match distance cache ~max:dist name k with | dist -> Some (dist, k, v) | exception Exit -> None in Seq.filter_map filter seq |> List.of_seq |> List.sort (fun (d1,_,_) (d2,_,_) -> Int.compare d1 d2) end let print_dym f oc = function | [] -> () | x :: xs -> let rec print_list oc = function | [] -> () | [x] -> Printf.fprintf oc " or %s" (f x) | x :: xs -> Printf.fprintf oc ", %s" (f x); print_list oc xs in Printf.fprintf oc " (did you mean %s%a?)" (f x) print_list (list_take 4 xs)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>