package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/reachability.ml.html
Source file reachability.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236(******************************************************************************) (* *) (* Reachability *) (* *) (* Copyright (c) 2025 Frédéric Bour *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"), *) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included in *) (* all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (******************************************************************************) (** This module computes the reachability of states in a parser automaton. It is used to reason about the behavior of an LR(1) automaton after conflict resolution (with some transitions removed). The module implements algorithms for partitioning lookahead symbols with identical behaviors, and uses these partitions to determine the cost of reaching each state with a given lookahead. *) open Fix.Indexing open Utils open Misc open Info module type S = sig type g type reduction = { (* The production that is being reduced *) production: g production index; (* The set of lookahead terminals that allow this reduction to happen *) lookahead: g terminal indexset; (* The shape of the stack, all the transitions that are replaced by the goto transition when the reduction is performed *) steps: g transition index list; (* The lr1 state at the top of the stack before reducing. That is [state] can reduce [production] when the lookahead terminal is in [lookahead]. *) state: g lr1 index; } (* [unreduce tr] lists all the reductions that ends up following [tr]. *) val unreduce : g goto_transition index -> reduction list module Classes : sig (* Returns the classes of terminals for a given goto transition *) val for_edge : g goto_transition index -> g terminal indexset array (* Returns the classes of terminals for a given LR(1) state *) val for_lr1 : g lr1 index -> g terminal indexset array (* Returns the classes of terminals before taking a transition *) val pre_transition : g transition index -> g terminal indexset array (* Returns the classes of terminals after taking a transition *) val post_transition : g transition index -> g terminal indexset array end module Coercion : sig type pre = Pre_identity | Pre_singleton of int (* Compute the pre coercion from a partition of the form P = first(cost(s, A)) to a partition of the form Q = first(ccost(s, A → ϵ•α))) *) val pre : 'a indexset array -> 'a indexset array -> pre option type forward = int array array type backward = int array type infix = { forward : forward; backward : backward; } (* Compute the infix coercion from two partitions P Q such that Q <= P *) val infix : ?lookahead:'a indexset -> 'a indexset array -> 'a indexset array -> infix end module Tree : sig include CARDINAL (* Returns the leaf node corresponding to a given transition *) val leaf : g transition index -> n index (* Splits a node into its left and right children if it is an inner node *) val split : n index -> (g transition index, n index * n index) either (* Returns the nullable terminals and non-nullable equations for a given goto transition *) type equations = { nullable_lookaheads: g terminal indexset; nullable: reduction list; non_nullable: (reduction * n index) list; } val goto_equations : g goto_transition index -> equations (* Returns the pre-classes for a given node *) val pre_classes : n index -> g terminal indexset array (* Returns the post-classes for a given node *) val post_classes : n index -> g terminal indexset array end (* Identify each cell of compact cost matrices. A [Cell.n index] can be thought of as a triple made of a tree node and two indices (row, col) of the compact cost matrix associated to the node. *) module Cell : sig include CARDINAL (* A value of type row represents the index of a row of a matrix. A row of node [n] belongs to the interval 0 .. Array.length (Tree.pre_classes n) - 1 *) type row = int (* A value of type column represents the index of a column of a matrix. A column of node [n] belongs to the interval 0 .. Array.length (Tree.post_classes n) - 1 *) type column = int (* Get the cell corresponding to a node, a row, and a column *) val encode : Tree.n index -> pre:row -> post:column -> n index (* Get the node, row, and column corresponding to a cell *) val decode : n index -> Tree.n index * row * column type goto val goto : goto cardinal val is_goto : n index -> goto index option val of_goto : goto index -> n index val goto_encode : g goto_transition index -> pre:row -> post:column -> goto index val goto_decode : goto index -> g goto_transition index * row * column val iter_goto : g goto_transition index -> (goto index -> unit) -> unit end module Analysis : sig val cost : Cell.n index -> int val finite : Cell.n index -> bool end end type 'g t = (module S with type g = 'g) type ('g, 'cell) t_cell = (module S with type g = 'g and type Cell.n = 'cell) let make (type g) (g : g grammar) : g t = (module struct type nonrec g = g (* ---------------------------------------------------------------------- *) (* Useful definitions *) (* Testing class inclusion *) let quick_subset = IndexSet.quick_subset (* ---------------------------------------------------------------------- *) (* Compute the inverse of the reduction relation. It lists the different reductions that lead to following a goto transition, reversing the effect of a single reduction. It serves the same purpose as the [reduce(s, A → α)] function from the paper but is more convenient for the rest of the implementation. *) type reduction = { (* The production that is being reduced *) production: g production index; (* The set of lookahead terminals that allow this reduction to happen *) lookahead: g terminal indexset; (* The shape of the stack, all the transitions that are replaced by the goto transition when the reduction is performed *) steps: g transition index list; (* The lr1 state at the top of the stack before reducing. That is [state] can reduce [production] when the lookahead terminal is in [lookahead]. *) state: g lr1 index; } (* [unreduce tr] lists all the reductions that ends up following [tr]. *) let unreduce : g goto_transition index -> reduction list = let predecessors = Vector.init (Lr1.cardinal g) @@ fun lr1 -> iterate [lr1, []] @@ fun states -> let expand acc (state, steps) = IndexSet.fold (fun tr acc -> (Transition.source g tr, tr :: steps) :: acc ) (Transition.predecessors g state) acc in List.fold_left expand [] states in let table = Vector.make (Transition.goto g) [] in (* [add_reduction lr1 (production, lookahead)] populates [table] by simulating the reduction [production], starting from [lr1] when lookahead is in [lookahead] *) let add_reduction lr1 (production, lookahead) = if Production.kind g production = `REGULAR then begin let lhs = Production.lhs g production in let rhs = Production.rhs g production in let states = Array.fold_right (fun _ pred -> Lazy.force pred.lnext) rhs predecessors.:(lr1) in List.iter (fun (source, steps) -> table.@(Transition.find_goto g source lhs) <- List.cons { production; lookahead; steps; state=lr1 } ) states.lvalue end in (* [get_reductions lr1] returns the list of productions and the lookahead sets that allow reducing them from state [lr1] *) let get_reductions lr1 = match Lr1.default_reduction g lr1 with | Some prod -> (* State has a default reduction, the lookahead can be any terminal *) [prod, Terminal.all g] | None -> IndexSet.fold (fun red acc -> (Reduction.production g red, Reduction.lookaheads g red) :: acc) (Reduction.from_lr1 g lr1) [] in (* Populate [table] with the reductions of all state *) Index.iter (Lr1.cardinal g) (fun lr1 -> List.iter (add_reduction lr1) (get_reductions lr1)); Vector.get table (* ---------------------------------------------------------------------- *) (* Compute classes refinement. This implements section 6.2, Approximating first and follow Partitions. This algorithm computes a partition of tokens for each transition. The partition is a bit finer than necessary, but the approximation is still sound: merging the rows or columns of the matrices based on token classes gives a correct result. *) module Classes = struct (* A node of the graph is either an lr1 state or a goto transition *) module Node = (val Sum.make (Lr1.cardinal g) (Transition.goto g)) (* Represents the dependency graph of Equation 7-9, to compute the SCCs *) module Gr = struct type node = Node.n index let n = cardinal Node.n let index = Index.to_int let visit_lr1 f lr1 = match Lr1.incoming g lr1 with | Some sym when Symbol.is_nonterminal g sym -> IndexSet.iter (fun tr -> match Transition.split g tr with | L nt -> f (Node.inj_r nt) | R _ -> assert false ) (Transition.predecessors g lr1) | _ -> () let successors f i = match Node.prj i with | L lr1 -> visit_lr1 f lr1 | R e -> List.iter (fun {state; _} -> f (Node.inj_l state)) (unreduce e) let iter f = Index.iter Node.n f end module Scc = Tarjan.Run(Gr) (* Associate a class to each node *) let classes = Vector.make Node.n IndexSet.Set.empty (* Evaluate classes for a node, directly computing equation 4-6. (compute follow for a goto node, first for an lr1 node) [classes] vector is used to approximate recursive occurrences. *) let classes_of acc node = let acc = ref acc in begin match Node.prj node with | L lr1 -> Gr.visit_lr1 (fun n -> acc := IndexSet.Set.union classes.:(n) !acc) lr1 | R edge -> List.iter (fun {lookahead; state; _} -> let base = classes.:(Node.inj_l state) in (* Comment the code below to have a partial order on partitions (remove the ↑Z in equation (6) *) let base = if lookahead != Terminal.all g then IndexSet.Set.map (IndexSet.inter lookahead) base else base in (* Stop commenting here *) acc := IndexSet.Set.union (IndexSet.Set.add lookahead base) !acc ) (unreduce edge) end; !acc let partition_sets sets = sets |> IndexSet.Set.elements |> IndexRefine.partition |> IndexSet.Set.of_list let visit_scc _ nodes = (* Compute approximation for an SCC, as described in section 6.2 *) let coarse_classes = partition_sets (List.fold_left classes_of IndexSet.Set.empty nodes) in match nodes with | [node] -> classes.:(node) <- coarse_classes | nodes -> List.iter begin fun node -> match Node.prj node with | L _ -> () | R e -> let coarse = ref IndexSet.empty in List.iter (fun {lookahead; _} -> coarse := IndexSet.union lookahead !coarse) (unreduce e); classes.:(node) <- partition_sets (IndexSet.Set.map (IndexSet.inter !coarse) coarse_classes) end nodes; List.iter begin fun node -> match Node.prj node with | R _ -> () | L lr1 -> let acc = ref IndexSet.Set.empty in Gr.visit_lr1 (fun n -> acc := IndexSet.Set.union classes.:(n) !acc) lr1; classes.:(node) <- partition_sets !acc end nodes let () = Scc.rev_topological_iter visit_scc (* Initialize classes of initial states and of states whose incoming symbol is a terminal *) let () = Index.iter (Lr1.cardinal g) (fun lr1 -> match Lr1.incoming g lr1 with | Some sym when Symbol.is_nonterminal g sym -> () | None | Some _ -> classes.:(Node.inj_l lr1) <- IndexSet.Set.singleton (Terminal.all g) ) (* We now have the final approximation. Classes will be identified and accessed by their index, random access is important. *) let classes = let prepare l = let a = Array.of_seq (IndexSet.Set.to_seq l) in Array.sort IndexSet.compare_minimum a; a in Vector.map prepare classes let for_edge nte = classes.:(Node.inj_r nte) let for_lr1 st = classes.:(Node.inj_l st) (* Precompute the singleton partitions, e.g. { {t}, T/{t} } for each t *) let t_singletons = Vector.init (Terminal.cardinal g) (fun t -> [|IndexSet.singleton t|]) let all_terminals = [|Terminal.all g|] (* Just before taking a transition [tr], the lookahead has to belong to one of the classes in [pre_transition tr]. [pre_transition tr] indexes the rows of cost matrix for [tr]. *) let pre_transition tr = match Transition.split g tr with | L _goto -> for_lr1 (Transition.source g tr) | R shift -> t_singletons.:(Transition.shift_symbol g shift) (* Just after taking a transition [tr], the lookahead has to belong to one of the classes in [post_transition tr]. [post_transition tr] indexes the columns of cost matrix for [tr]. *) let post_transition tr = match Transition.split g tr with | L edge -> for_edge edge | R _ -> all_terminals end let () = stopwatch 2 "reachability: computed classes" (* ---------------------------------------------------------------------- *) (* We now construct the DAG (as a tree with hash-consing) of all matrix products. Each occurrence of [ccost(s,x)] is mapped to a leaf. Occurrences of [(ccost(s, A → α•xβ)] are mapped to inner nodes, except that the chain of multiplication are re-associated. *) module ConsedTree () : sig (* The finite set of nodes of the tree. The set is not frozen yet: as long as its cardinal has not been observed, new nodes can be added. *) include CARDINAL (* The set of inner nodes *) module Inner : CARDINAL (* [leaf tr] returns the node that corresponds [cost(s,x)] where [s = source tr] and [x = symbol tr]. *) val leaf : g transition index -> n index (* [node l r] returns the inner-node that corresponds to the matrix product [l * r] *) val node : n index -> n index -> n index (* Get the tree node that corresponds to an inner node *) val inject : Inner.n index -> n index (* Determines whether a node is a leaf or an inner node *) val split : n index -> (g transition index, Inner.n index) either (* Once all nodes have been added, the DAG needs to be frozen *) module FreezeTree() : sig val define : Inner.n index -> n index * n index end end = struct (* The fresh finite set of all inner nodes *) module Inner = Gensym() (* The nodes of the trees is the disjoint sum of all transitions (the leaves) and the inner nodes. *) include (val Sum.make (Transition.any g) Inner.n) let leaf = inj_l let inject = inj_r let split = prj (* An inner node is made of the index of its left and right children *) type pack = n index * n index let pack t u = (t, u) let unpack x = x (* The node table is used to give a unique index to each inner node *) let node_table : (pack, Inner.n index) Hashtbl.t = Hashtbl.create 7 (* Returns the index of an inner node, or allocate one for a new node *) let node l r = let p = pack l r in let node_index = try Hashtbl.find node_table p with Not_found -> let i = Inner.fresh () in Hashtbl.add node_table p i; i in inj_r node_index (* When all nodes have been created, the set of nodes can be frozen. A reverse index is created to get the children of an inner node. *) module FreezeTree() = struct let rev_index = Vector.make' Inner.n (fun () -> let dummy = Index.of_int n 0 in (dummy, dummy)) let define ix = rev_index.:(ix) let () = Hashtbl.iter (fun pair index -> rev_index.:(index) <- unpack pair) node_table end end (* ---------------------------------------------------------------------- *) (* This module implements efficient representations of the coerce matrices, as mentioned in section 6.5. However, our implementation has one more optimization. In general, we omit the last block of a partition (it can still be deduced by removing the other blocks from the universe T, see section 6.1). The block that is omitted is one that is guaranteed to have infinite cost in the compact cost matrix. Therefore, we never need to represent the rows and columns that correspond to the missing class; by construction we know they have infinite cost. For instance for shift transitions, it means we only have a 1x1 matrix: the two classes are the terminal being shifted, with a cost of one, and its complement, with an infinite cost, that is omitted. Our coercion functions are augmented to handle this special case. *) module Coercion = struct (* Pre coercions are used to handle the minimum in equation (7): ccost(s, A → ϵ•α) · creduce(s, A → α) If α begins with a terminal, it will have only one class. This is handled by the [Pre_singleton x] constructor that indicates that this only class should be coerced to class [x]. If α begins with a non-terminal, [Pre_identity] is used: ccost(s, A) and ccost(s, A → ϵ•α) are guaranteed to have the same "first" classes. *) type pre = | Pre_identity | Pre_singleton of int (* Compute the pre coercion from a partition of the form P = first(cost(s, A)) to a partition of the form Q = first(ccost(s, A → ϵ•α))) If α starts with a terminal, we look only for the *) let pre outer inner = if outer == inner then Some Pre_identity else ( assert (Array.length inner = 1); assert (IndexSet.is_singleton inner.(0)); let t = IndexSet.choose inner.(0) in match Utils.Misc.array_findi (fun _ ts -> IndexSet.mem t ts) 0 outer with | i -> Some (Pre_singleton i) | exception Not_found -> (* If the production that starts with the 'inner' partition cannot be reduced (because of conflict resolution), the transition becomes unreachable and the terminal `t` might belong to no classes. *) None ) (* The type infix is the general representation for the coercion matrices coerce(P, Q) appearing in M1 · coerce(P, Q) · M2 Since Q is finer than P, a class of P maps to multiple classes of Q. This is represented by the forward array: a class p in P maps to all classes q in array [forward.(p)]. The other direction is an injection: a class q in Q maps to class [backward.(q)] in P. The special class [-1] represents a class that is not mapped in the partition (this occurs for instance when using creduce to filter a partition). *) type forward = int array array type backward = int array type infix = { forward: forward; backward: backward } (* Compute the infix coercion from two partitions P Q such that Q <= P. The optional [lookahead] argument is used to filter classes outside of a certain set of terminals, exactly like the ↓ operator on partitions. This is used to implement creduce operator. *) let infix ?lookahead pre_classes post_classes = let forward_size = Array.make (Array.length pre_classes) 0 in let backward = Array.map (fun ca -> let keep = match lookahead with | None -> true | Some la -> quick_subset ca la in if keep then ( match Utils.Misc.array_findi (fun _ cb -> quick_subset ca cb) 0 pre_classes with | exception Not_found -> -1 | i -> forward_size.(i) <- 1 + forward_size.(i); i ) else (-1) ) post_classes in let forward = Array.map (fun sz -> Array.make sz 0) forward_size in Array.iteri (fun i_pre i_f -> if i_f <> -1 then ( let pos = forward_size.(i_f) - 1 in forward_size.(i_f) <- pos; forward.(i_f).(pos) <- i_pre ) ) backward; { forward; backward } end (* ---------------------------------------------------------------------- *) (* The hash-consed tree of all matrix equations (products and minimums). *) module Tree = struct include ConsedTree() type equations = { nullable_lookaheads: g terminal indexset; nullable: reduction list; non_nullable: (reduction * n index) list; } let goto_equations = (* Explicit representation of the rhs of equation (7). This equation defines ccost(s, A) as the minimum of a set of sub-matrices. Matrices of the form [creduce(s, A → α)] are represented by a [TerminalSet.t], following section 6.5. [goto_equations] are represented as pair [(nullable, non_nullable)] such that, for each sub-equation [ccost(s, A→ϵ•α) · creduce(s, A→α)]: - if [α = ϵ] (an empty production can reduce A), [nullable] contains the terminals [creduce(s, A → α)] - otherwise, [non_nullable] contains the pair [ccost(s, A→ϵ•α)], [creduce(s, A→α)} *) tabulate_finset (Transition.goto g) @@ fun tr -> (* Number of rows in the compact cost matrix for tr *) let first_dim = Array.length (Classes.pre_transition (Transition.of_goto g tr)) in (* Number of columns in the compact cost matrix for a transition tr' *) let transition_size tr' = Array.length (Classes.post_transition tr') in (* Import the solution to a matrix-chain ordering problem as a sub-tree *) let rec import_mcop = function | Mcop.Matrix l -> leaf l | Mcop.Product (l, r) -> node (import_mcop l) (import_mcop r) in (* Compute the nullable terminal set and non_nullable list for a single reduction, optimizing the matrix-product chain. *) let solve_ccost_path red = let dimensions = first_dim :: List.map transition_size red.steps in match Mcop.dynamic_solution (Array.of_list dimensions) with | exception Mcop.Empty -> Either.Left red | solution -> let steps = Array.of_list red.steps in let solution = Mcop.map_solution (fun i -> steps.(i)) solution in Either.Right (red, import_mcop solution) in let nullable, non_nullable = List.partition_map solve_ccost_path (unreduce tr) in { nullable_lookaheads = List.fold_left (fun set red -> IndexSet.union red.lookahead set) IndexSet.empty nullable; nullable; non_nullable; } include FreezeTree() (* Pre-compute classes before (pre) and after (post) a node *) let table_pre = Vector.make Inner.n [||] let table_post = Vector.make Inner.n [||] let pre_classes t = match split t with | L tr -> Classes.pre_transition tr | R ix -> table_pre.:(ix) let post_classes t = match split t with | L tr -> Classes.post_transition tr | R ix -> table_post.:(ix) let pre_count t = Array.length (pre_classes t) let post_count t = Array.length (post_classes t) let () = (* Nodes are allocated in topological order. When iterating over all nodes, children are visited before parents. *) Index.iter Inner.n @@ fun node -> let l, r = define node in table_pre.:(node) <- pre_classes l; table_post.:(node) <- post_classes r let split i = match split i with | L _ as result -> result | R n -> R (define n) end let () = stopwatch 2 "reachability: constructed tree" (* ---------------------------------------------------------------------- *) (* Representation of matrix cells, the variables of the data flow problem. There will be a lot of them. Actually, on large grammars, most of the memory is consumed by cost matrices. Therefore we want a rather compact encoding. We use a two-level encoding: - first the [table] vector maps a node index to a "compact cost matrix" - each "compact cost matrix" is represented as a 1-dimensional array of integers, of dimension |pre_classes n| * |post_classes n| This module defines conversion functions between three different representations of cells: [Cell.t] identify a cell as a single integer <=> [Tree.n index * Cells.offset] identify a cell as a pair of a node and an offset in the array of costs <=> [Tree.n index * Cells.row * Cells.column] identify a cell as a triple of a node, a row index and a column index of the compact cost matrix *) module Cell : sig include CARDINAL (* A value of type row represents the index of a row of a matrix. A row of node [n] belongs to the interval 0 .. Array.length (Tree.pre_classes n) - 1 *) type row = int (* A value of type column represents the index of a column of a matrix. A column of node [n] belongs to the interval 0 .. Array.length (Tree.post_classes n) - 1 *) type column = int (* Get the cell corresponding to a node, a row, and a column *) val encode : Tree.n index -> pre:row -> post:column -> n index (* Get the node, row, and column corresponding to a cell *) val decode : n index -> Tree.n index * row * column (* Index of the first cell of matrix associated to a node *) val first_cell : Tree.n index -> n index type goto val goto : goto cardinal val is_goto : n index -> goto index option val of_goto : goto index -> n index val goto_encode : g goto_transition index -> pre:row -> post:column -> goto index val goto_decode : goto index -> g goto_transition index * row * column val iter_goto : g goto_transition index -> (goto index -> unit) -> unit end = struct type row = int type column = int let n, pre_bits, post_bits = let max_pre = ref 0 in let max_post = ref 0 in let n = ref 0 in let bits_needed n = let i = ref 0 in while 1 lsl !i <= n do incr i; done; !i in Index.iter Tree.n begin fun node -> let pre = Tree.pre_count node in let post = Tree.post_count node in n := !n + pre * post; max_pre := Int.max pre !max_pre; max_post := Int.max post !max_post; end; (!n, bits_needed !max_pre, bits_needed !max_post) include Const(struct let cardinal = n end) let mapping = Vector.make n 0 let first_cell = let index = ref 0 in Vector.init Tree.n @@ fun node -> let first_index = !index in let base = (node :> int) lsl (pre_bits + post_bits) in let pre_count = Tree.pre_count node in let post_count = Tree.post_count node in for pre = 0 to pre_count - 1 do let base = base lor (pre lsl post_bits) in for post = 0 to post_count - 1 do mapping.:(Index.of_int n !index) <- base lor post; incr index done done; first_index let decode ix = let i = mapping.:(ix) in let post = i land (1 lsl post_bits - 1) in let i = i lsr post_bits in let pre = i land (1 lsl pre_bits - 1) in (Index.of_int Tree.n (i lsr pre_bits), pre, post) let encode i = let first = first_cell.:(i) in let post_count = Tree.post_count i in fun ~pre ~post -> Index.of_int n (first + pre * post_count + post) let first_goto_node, first_goto_cell, last_goto_cell = match cardinal (Transition.goto g) with | 0 -> (0, 0, -1) | n -> let tr i = Transition.of_goto g (Index.of_int (Transition.goto g) i) in let first_goto_node = Tree.leaf (tr 0) in let first = first_cell.:(first_goto_node) in let last = Tree.leaf (tr (n - 1)) in let next = Index.of_int Tree.n ((last :> int) + 1) in ((first_goto_node :> int), first, first_cell.:(next) - 1) module Goto = Const(struct let cardinal = last_goto_cell - first_goto_cell + 1 end) type goto = Goto.n let goto = Goto.n let is_goto (i : n index) = let i = (i :> int) in if first_goto_cell <= i && i <= last_goto_cell then Some (Index.of_int goto (i - first_goto_cell)) else None let of_goto (g : goto index) = Index.of_int n (first_goto_cell + (g :> int)) let goto_decode (gt : goto index) = let n, pre, post = decode (of_goto gt) in let gt = Index.of_int (Transition.goto g) ((n :> int) - first_goto_cell) in (gt, pre, post) let goto_encode i = let node = Tree.leaf (Transition.of_goto g i) in let first = first_cell.:(node) - first_goto_cell in let post_count = Tree.post_count node in fun ~pre ~post -> Index.of_int goto (first + pre * post_count + post) let iter_goto (gt : g goto_transition index) f = let i = (gt :> int) in let index_of i = first_cell.:(Index.of_int Tree.n (first_goto_node + i)) in for j = index_of i to index_of (i + 1) - 1 do f (Index.of_int goto (j - first_goto_cell)) done let first_cell i = Index.of_int n first_cell.:(i) end let () = stopwatch 2 "reachability: indexed matrix cells" module Reverse_dependencies = struct (* Reverse dependencies record in which equations a node appears *) type t = (* Equation (7): this node appears in the RHS of the definition of a goto transition. The dependency is accompanied with pre-coercion (see [Coercion.pre]) and the forward coercion that represents the creduce(...). *) | Leaf of g goto_transition index * Coercion.pre * Coercion.forward (* Equation (8): this node appears in some inner product. The dependency stores the index of the parent node as well as the coercion matrix. *) | Inner of Tree.Inner.n index * Coercion.infix let occurrences : (Tree.n, t list) vector = (* Store enough information with each node of the tree to compute which cells are affected if a cell of this node changes. Because of sharing, a node can have multiple parents. *) Vector.make Tree.n [] let () = Index.iter (Transition.goto g) begin fun tr -> (* Record dependencies of a goto transition. *) let node = Tree.leaf (Transition.of_goto g tr) in let pre = Tree.pre_classes node in let post = Tree.post_classes node in (* Register dependencies to other reductions *) List.iter begin fun ({lookahead; _}, node') -> match Coercion.pre pre (Tree.pre_classes node') with | None -> (* The goto transition is unreachable because of conflict resolution. Don't register any dependency. *) () | Some coerce_pre -> let post' = Tree.post_classes node' in let coerce_post = Coercion.infix post' post ~lookahead in occurrences.@(node') <- List.cons (Leaf (tr, coerce_pre, coerce_post.Coercion.forward)) end (Tree.goto_equations tr).non_nullable end; (* Record dependencies on a inner node. *) Index.iter Tree.Inner.n begin fun node -> let (l, r) = Tree.define node in (*(*sanity*)assert (Tree.pre_classes l == Tree.pre_classes node);*) (*(*sanity*)assert (Tree.post_classes r == Tree.post_classes node);*) let c1 = Tree.post_classes l in let c2 = Tree.pre_classes r in let coercion = Coercion.infix c1 c2 in let dep = Inner (node, coercion) in assert (Array.length c2 = Array.length coercion.Coercion.backward); occurrences.@(l) <- List.cons dep; occurrences.@(r) <- List.cons dep end let visit_occurrences index ~visit_goto ~from_left ~acc ~acc_right ~from_right = let node, i_pre, i_post = Cell.decode index in let update_dep = function | Leaf (parent, pre, post) -> (* If the production begins with a terminal, we have to map the class *) let i_pre' = match pre with | Coercion.Pre_singleton i -> i | Coercion.Pre_identity -> i_pre in let encode = Cell.goto_encode parent in Array.iter (fun i_post' -> visit_goto (encode ~pre:i_pre' ~post:i_post')) post.(i_post) | Inner (parent, inner) -> (* This change updates the cost of an occurrence of equation 8, of the form l . coercion . r We have to find whether the change comes from the [l] or the [r] node to update the right-hand cells of the parent *) let l, r = Tree.define parent in let encode_p = Cell.encode (Tree.inject parent) in if l = node then ( (* The left term has been updated *) let encode_r = Cell.encode r in for i_post' = 0 to Array.length (Tree.post_classes r) - 1 do let acc = Array.fold_left (fun acc i_pre' -> acc_right acc (encode_r ~pre:i_pre' ~post:i_post')) acc inner.Coercion.forward.(i_post) in from_left ~right:acc ~parent:(encode_p ~pre:i_pre ~post:i_post') done ) else ( (* The right term has been updated *) (*sanity*)assert (r = node); match inner.Coercion.backward.(i_pre) with | -1 -> () | l_post -> let encode_l = Cell.encode l in for i_pre = 0 to Array.length (Tree.pre_classes l) - 1 do from_right ~left:(encode_l ~pre:i_pre ~post:l_post) ~parent:(encode_p ~pre:i_pre ~post:i_post) done ) in List.iter update_dep occurrences.:(node) end let () = stopwatch 2 "reachability: reversed matrix dependencies" (* ---------------------------------------------------------------------- *) (* Represent the data flow problem to solve *) module Solver = struct let min_cost a b : int = if a < b then a else b (* Initialize shift transitions to cost 1. *) let initialize_shift ~visit_root tr = let node = Tree.leaf (Transition.of_shift g tr) in (*sanity*)assert (Array.length (Tree.pre_classes node) = 1); (*sanity*)assert (Array.length (Tree.post_classes node) = 1); visit_root (Cell.first_cell node) 1 (* Record dependencies on a goto transition. *) let initialize_goto ~visit_root tr = let node = Tree.leaf (Transition.of_goto g tr) in let eqn = Tree.goto_equations tr in (* Set matrix cells corresponding to nullable reductions to 0 *) if IndexSet.is_not_empty eqn.nullable_lookaheads then ( let pre = Tree.pre_classes node in let post = Tree.post_classes node in (* We use: - [c_pre] and [i_pre] for a class in the pre partition and its index - [c_post] and [i_post] for a class in the post partition and its index *) let encode = Cell.encode node in let update_cell i_post c_post i_pre c_pre = if not (IndexSet.disjoint c_pre c_post) then visit_root (encode ~pre:i_pre ~post:i_post) 0 in let update_col i_post c_post = if quick_subset c_post eqn.nullable_lookaheads then Array.iteri (update_cell i_post c_post) pre in Array.iteri update_col post ) let costs = Vector.make Cell.n max_int (* A graph representation suitable for the DataFlow solver *) module Graph = struct type variable = Cell.n index (* We cheat a bit. Normally a root is either the cell corresponding to a shift transition (initialized to 1) or the cells corresponding to the nullable reductions of a goto transitions (initialized to 0). Rather than duplicating the code for exactly computing those cells, we visit all transitions and consider every non-infinite cell a root. *) let foreach_root visit_root = (* Populate roots: - shift transitions have cost 1 by definition - nullable goto transitions have cost 0 *) Index.iter (Transition.shift g) (initialize_shift ~visit_root); Index.iter (Transition.goto g) (initialize_goto ~visit_root) (* Visit all the successors of a cell. This amounts to: - finding the node the cell belongs to - looking at the reverse dependencies of this node - visiting all cells that are affected in the dependencies *) let foreach_successor index cost f = (* The cost has to be less than the maximum otherwise there is no point in relaxing the node. This guarantees that the additions below do not overflow. *) assert (cost < max_int); Reverse_dependencies.visit_occurrences index ~visit_goto:(fun cell -> f (Cell.of_goto cell) cost) ~acc:max_int ~acc_right:(fun cost right -> min_cost cost costs.:(right)) ~from_left:(fun ~right ~parent -> if right < max_int then f parent (cost + right)) ~from_right:(fun ~left ~parent -> let left = costs.:(left) in if left < max_int then f parent (left + cost) ) end module Property = struct type property = int let leq_join = min_cost end (* Implement the interfaces required by DataFlow.ForCustomMaps *) module BoolMap() = struct let table = Boolvector.make Cell.n false let get t = Boolvector.test table t let set t x = if x then Boolvector.set table t else Boolvector.clear table t end (* Run the solver for shortest paths *) include Fix.DataFlow.ForCustomMaps(Property)(Graph)(struct let get i = Vector.get costs i let set i x = Vector.set costs i x end)(BoolMap()) (* Run the solver for finite languages *) module Bool_or = struct type property = bool let leq_join = (||) end module Finite = BoolMap() module FiniteGraph = struct type variable = Cell.n index let count = Vector.make Cell.goto 0 let () = Index.iter Cell.n (fun cell -> Reverse_dependencies.visit_occurrences cell ~visit_goto:(fun goto -> count.@(goto) <- succ) ~acc:() ~acc_right:(fun () _ -> ()) ~from_left:(fun ~right:() ~parent:_ -> ()) ~from_right:(fun ~left:_ ~parent:_ -> ()) ) let foreach_root visit_root = Index.iter (Transition.shift g) (fun sh -> let node = Tree.leaf (Transition.of_shift g sh) in visit_root (Cell.first_cell node) true ); Index.iter (Transition.goto g) (fun gt -> Cell.iter_goto gt (fun gt' -> let index = Cell.of_goto gt' in if costs.:(index) < max_int && count.:(gt') = 0 then visit_root index true ) ) (* Visit all the successors of a cell. This amounts to: - finding the node the cell belongs to - looking at the reverse dependencies of this node - visiting all cells that are affected in the dependencies *) let foreach_successor index finite f = if finite then Reverse_dependencies.visit_occurrences index ~visit_goto:(fun gt -> let count' = count.:(gt) - 1 in count.:(gt) <- count'; assert (count' >= 0); if count' = 0 then f index true ) ~acc:true ~acc_right:(fun acc right -> acc && Finite.get right) ~from_left:(fun ~right ~parent -> if right then f parent true) ~from_right:(fun ~left ~parent -> if Finite.get left then f parent true) end include Fix.DataFlow.ForCustomMaps(Bool_or)(FiniteGraph)(Finite)(BoolMap()) let () = stopwatch 2 "solved minimal costs" end module Analysis = struct let cost = Vector.get Solver.costs let finite = Solver.Finite.get end (*let () = let string_of_cost i = if i = max_int then "∞" else string_of_int i in Index.iter (Transition.goto g) (fun gt -> let min = ref max_int in let count = ref 0 in Cell.iter_goto gt (fun gtc -> incr count; min := Int.min (Analysis.cost (Cell.of_goto gtc)) !min); if !min = max_int then ( let tr = Transition.of_goto g gt in match List.filter_map begin fun (red, n) -> let pre_classes = Array.length (Tree.pre_classes n) in let post_classes = Array.length (Tree.post_classes n) in let encode = Cell.encode n in let candidates = ref [] in for pre = pre_classes - 1 downto 0 do for post = post_classes - 1 downto 0 do if Analysis.cost (encode ~pre ~post) <> max_int then push candidates (pre, post) done done; match !candidates with | candidates when List.exists begin function | Reverse_dependencies.Inner _ -> false | Reverse_dependencies.Leaf (gt', _pre, post) -> gt = gt' && List.exists (fun (_, post_index) -> Array.length post.(post_index) > 0) candidates end Reverse_dependencies.occurrences.:(n) -> Some (red, n, candidates) | _ -> None end (Tree.goto_equations gt).non_nullable with | [] -> () | paths -> Printf.eprintf "unreachable goto transition (id:%d): %s -> %s (%dx%d=%d classes)\n" (gt :> int) (Lr1.to_string g (Transition.source g tr)) (Lr1.to_string g (Transition.target g tr)) (Array.length (Classes.for_lr1 (Transition.source g tr))) (Array.length (Classes.for_edge gt)) !count; (*let terminals set = string_concat_map ~wrap:("{","}") ", " (Terminal.to_string g) (List.rev (IndexSet.elements set)) in*) let production_to_string g p = Nonterminal.to_string g (Production.lhs g p) ^ ": " ^ string_concat_map " " (Symbol.name g) (Array.to_list (Production.rhs g p)) in List.iter begin fun (red, n, candidates) -> (*let pre_classes = Array.length (Tree.pre_classes n) in let post_classes = Array.length (Tree.post_classes n) in*) Printf.eprintf "- reduction: %s" (production_to_string g red.production); let encode = Cell.encode n in Printf.eprintf " with candidates"; List.iter begin fun (pre, post) -> Printf.eprintf " (%d,%d, cell:%d)" pre post (encode ~pre ~post :> int) end candidates; Printf.eprintf "\n"; List.iter begin function | Reverse_dependencies.Leaf (gt', pre, post) when gt = gt' -> let pre = match pre with | Pre_identity -> Fun.id | Pre_singleton i -> Fun.const i in Printf.eprintf " found a reverse dependency with classes %s\n" (string_concat_map ", " (fun (pre_index, post_index) -> Printf.sprintf "(%d,%s)" (pre pre_index) (string_concat_map ~wrap:("[","]") "," string_of_cost (Array.to_list post.(post_index))) ) candidates) | _ -> () end Reverse_dependencies.occurrences.:(n); end paths ) )*) end)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>