package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/enumeration.ml.html
Source file enumeration.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434open Utils open Misc open Fix.Indexing open Info (* Computation of free failures: Given a set of stacks and an initial reduction, find each lookahead that end up being rejected by at least one stack of the set. *) (* A failure node associates to a goto transition the set of lookaheads that can be rejected (directly or not). *) type ('g, 'lrc) kernel = { (* The lrc index represent the set of stacks ending in this state. *) lrc: 'lrc index; (* The nonterminal labelling the goto transition to follow from these stacks, or none if the if the stacks should be considered directly. *) nto: 'g nonterminal opt index; (* Lookahead *) lookahead: 'g terminal indexset; } let kernel lrc ?goto lookahead = let nto = Opt.(Option.fold ~none ~some goto) in {lrc; nto; lookahead} type ('lrc, 'n) edge = { path: 'lrc index list; source: 'n index; target: 'n index; } type ('g, 'lrc, 'a, 'n) _graph = { ker : ('n, ('g, 'lrc) kernel) vector; fwd : ('n, ('lrc, 'n) edge list) vector; bkd : ('n, ('lrc, 'n) edge list) vector; entries: 'a array; } type ('g, 'lrc, 'a) graph = Graph : ('g, 'lrc, 'a, 'n) _graph -> ('g, 'lrc, 'a) graph (* Staged and cached lazy computation for construction the graph of failure nodes: 1. [let finder = free_failures grammar stacks rcs] lazily constructs the graph 2. [finder lrcs nt depth] is the list of failure nodes reachable by following a goto transition labelled [nt] [depth] states deep in the stacks described by [lrcs]. *) let rec fold_expand expand env f acc = function | [] -> acc | [x] -> f env acc x | x :: xs -> let acc = f env acc x in let env = expand env in fold_expand expand env f acc xs let make_graph (type g lrc a) (grammar : g grammar) (rcs : (g lr1, g Redgraph.reduction_closure) vector) (stacks : (g, lrc) Automata.stacks) (entries : ((g, lrc) kernel * a) list) = let open IndexBuffer in let module Nodes = Gen.Make() in let nodes = Nodes.get_generator () in let fwd = Dyn.make [] in let table = Hashtbl.create 500 in let rec synthesize (node : Nodes.n index) ker = let paths, tgt = let lr1 = stacks.label ker.lrc in match Opt.prj ker.nto with | None -> IndexSet.fold (fun lrc acc -> (lrc, [lrc]) :: acc) (stacks.prev ker.lrc) [], lr1 | Some nt -> ([ker.lrc, []], Transition.find_goto_target grammar lr1 nt) in let rc = rcs.:(tgt) in let explore_paths paths acc nts = IndexMap.fold begin fun nt lookahead' acc -> let lookahead = IndexSet.inter ker.lookahead lookahead' in if IndexSet.is_not_empty lookahead then List.fold_left begin fun acc (lrc', path) -> let target = get_node {lrc = lrc'; nto = Opt.some nt; lookahead} in {source=node; target; path} :: acc end acc paths else acc end nts acc in let expand_paths paths = List.fold_left begin fun acc (lrc0, path) -> IndexSet.fold (fun lrc acc -> (lrc, lrc :: path) :: acc) (stacks.prev lrc0) acc end [] paths in Dyn.set fwd node (fold_expand expand_paths paths explore_paths [] rc.reductions) and get_node ker = assert (IndexSet.is_not_empty ker.lookahead); match Hashtbl.find_opt table ker with | Some node -> node | None -> let node = Gen.add nodes ker in Hashtbl.add table ker node; synthesize node ker; node in let entry_nodes = List.map (fun (ker, _) -> Gen.add nodes ker) entries in List.iter (fun i -> synthesize i (Gen.get nodes i)) entry_nodes; let ker = Gen.freeze nodes in let fwd = Dyn.contents fwd Nodes.n in let bkd = Vector.make Nodes.n [] in Vector.iter (List.iter (fun edge -> bkd.@(edge.target) <- List.cons edge)) fwd; Graph {entries=Array.of_list (List.map snd entries); ker; fwd; bkd} let get_lr1_state grammar (stacks : _ Automata.stacks) ker = let lr1 = stacks.label ker.lrc in match Opt.prj ker.nto with | None -> lr1 | Some nt -> Transition.find_goto_target grammar lr1 nt let get_lr0_state grammar (stacks : _ Automata.stacks) ker = Lr1.to_lr0 grammar (get_lr1_state grammar stacks ker) (* Analysis of reachable lookaheads *) let get_failing grammar stacks rcs ker = rcs.:(get_lr1_state grammar stacks ker).Redgraph.failing type ('g, 'lrc, 'a, 'n) failing_sentence = { first: 'n index; pattern: 'g lr0 index; edges: ('lrc, 'n) edge list; failing: 'g terminal indexset; entry: 'a; } let make_failing_sentence gr (first, pattern, edges, failing) = let index = Index.to_int (List.fold_left (fun _ edge -> edge.source) first edges) in assert (index < Array.length gr.entries); {first; pattern; edges; failing; entry = gr.entries.(index)} let cover_with_maximal_patterns grammar rcs stacks gr = let results = ref [] in let todo = ref ( List.init (Array.length gr.entries) (fun i -> (Index.of_int (Vector.length gr.ker) i, [], IndexSet.empty)) ) in let covered = Vector.make (Lr0.cardinal grammar) IndexSet.empty in let emit node path failing = let ker = gr.ker.:(node) in let rec visit_stacks candidate = function | {Redgraph. subs = []} -> let lr0 = Lr1.to_lr0 grammar candidate in let covered0 = covered.:(lr0) in let covered' = IndexSet.union failing covered0 in if covered' != covered0 then ( covered.:(lr0) <- covered'; push results (make_failing_sentence gr (node, lr0, path, failing)) ) | {Redgraph.subs} -> List.iter (fun (stack, _la, subs) -> visit_stacks (List.hd stack) subs ) subs in let lr1 = get_lr1_state grammar stacks ker in visit_stacks lr1 rcs.:(lr1).Redgraph.stacks in let marked = Boolvector.make (Vector.length gr.ker) false in let visited = Vector.make (Vector.length gr.ker) IndexSet.empty in let propagate (node, path, failing) = let ker = gr.ker.:(node) in let failing = IndexSet.union (get_failing grammar stacks rcs ker) failing in if not (Boolvector.test marked node) || not (IndexSet.equal visited.:(node) failing) then ( Boolvector.set marked node; visited.@(node) <- IndexSet.union failing; match gr.fwd.:(node) with | [] -> if IndexSet.is_not_empty failing then emit node path failing | edges -> List.iter begin fun edge -> push todo (edge.target, edge :: path, failing) end edges ) in fixpoint ~propagate todo; !results type ('g, 'a) dispenser = { fallible0: ('g lr0, 'g terminal indexset) vector; mutable next : 'a Seq.t; } let mark_covered disp lr0 la = disp.fallible0.@(lr0) <- IndexSet.union la let mark_sentence_covered g stacks gr disp {first; edges; failing; _} = let mark node = mark_covered disp (get_lr0_state g stacks gr.ker.:(node)) failing in mark first; List.iter (fun edge -> mark edge.source) edges let next disp = let result, next = match disp.next () with | Seq.Nil -> (None, Seq.empty) | Seq.Cons (x, xs) -> (Some x, xs) in disp.next <- next; result let to_seq disp = disp.next let cover_all (type g n) grammar rcs stacks (gr : (g, _, _, n) _graph) = let disp = { fallible0 = Vector.make (Lr0.cardinal grammar) IndexSet.empty; next = Seq.empty; } in disp.next <- begin fun () -> let n = Vector.length gr.ker in let visited_prefix = Boolvector.make n false in let visited_suffix = Boolvector.make n false in let fallible = Vector.make n IndexSet.empty in let prefixes = Vector.make n [] in let suffixes = Vector.make n [] in let shortest_prefix = Vector.make n [] in let shortest_suffix = Vector.make n [] in let todo = ref [] in let propagate (dir, node, path, failing) = let ker = gr.ker.:(node) in let failing = IndexSet.union failing (get_failing grammar stacks rcs ker) in (* Remember the shortest paths, find where to mark the visit status *) let visited = match dir with | `Prefix -> if list_is_empty shortest_prefix.:(node) then shortest_prefix.:(node) <- path; visited_prefix | `Suffix -> if list_is_empty shortest_suffix.:(node) then shortest_suffix.:(node) <- path; visited_suffix in let fallible' = IndexSet.union failing fallible.:(node) in if not (Boolvector.test visited node) || fallible' != fallible.:(node) then ( Boolvector.set visited node; fallible.:(node) <- fallible'; let lr0 = get_lr0_state grammar stacks ker in let fallible0' = IndexSet.diff failing disp.fallible0.:(lr0) in (* Save path if it is the first to cover some lookahead *) if IndexSet.is_not_empty fallible0' then ( disp.fallible0.@(lr0) <- IndexSet.union fallible0'; let sentences = match dir with | `Prefix -> prefixes | `Suffix -> suffixes in sentences.@(node) <- List.cons (path, failing); ); (* Extend path with successors *) let prj, list = match dir with | `Prefix -> ((fun edge -> edge.source), gr.bkd.:(node)) | `Suffix -> ((fun edge -> edge.target), gr.fwd.:(node)) in List.iter (fun edge -> push todo (dir, prj edge, edge :: path, failing)) list ); in Index.iter n begin fun node -> if list_is_empty gr.bkd.:(node) then propagate (`Suffix, node, [], IndexSet.empty) else if list_is_empty gr.fwd.:(node) then propagate (`Prefix, node, [], IndexSet.empty) end; fixpoint ~propagate todo; Index.iter n begin fun node -> if not (list_is_empty gr.bkd.:(node)) then assert (not (list_is_empty shortest_suffix.:(node))); if not (list_is_empty gr.fwd.:(node)) then assert (not (list_is_empty shortest_prefix.:(node))); end; Index.init_seq n begin fun node () -> let output (prefix, pfail) (suffix, sfail) = let failing = IndexSet.union pfail sfail in let sentence = List.rev_append prefix suffix in let first = match sentence with | [] -> node | x :: _ -> x.target in (first, sentence, failing) in let sprefix = shortest_prefix.:(node) in let ssuffix = shortest_suffix.:(node) in let output_prefixes prefixes = List.to_seq prefixes |> Seq.map (fun prefix' -> output prefix' (ssuffix, IndexSet.empty)) in let output_suffixes suffixes = List.to_seq suffixes |> Seq.map (fun suffix' -> output (sprefix, IndexSet.empty) suffix') in match List.rev prefixes.:(node), suffixes.:(node) with | prefix0 :: prefixes, suffix0 :: suffixes -> Seq.Cons (output prefix0 suffix0, Seq.append (output_prefixes prefixes) (output_suffixes suffixes)) | prefixes, suffixes -> Seq.append (output_prefixes prefixes) (output_suffixes suffixes) () end |> Seq.concat |> Seq.filter_map (fun (node, edges, failing) -> let productive = ref false in let check node = let lr0 = get_lr0_state grammar stacks gr.ker.:(node) in let fallible = disp.fallible0.:(lr0) in let fallible' = IndexSet.diff fallible failing in if fallible != fallible' then ( disp.fallible0.:(lr0) <- fallible'; productive := true; ) in check node; List.iter (fun edge -> check edge.source) edges; if !productive then Some (node, get_lr0_state grammar stacks gr.ker.:(node), edges, failing) else None ) |> Seq.map (make_failing_sentence gr) |> (fun seq -> seq ()) end; disp (* Strategy for enumeration - Construct the graph using [get_node] to inject each entry point. - Use [cover_entries_with_maximal_patterns] to produce suffixes starting from all entrypoints simulateneously and covering all lookaheads. This is sufficient for maximal patterns, but if we want exhaustive coverage, we need a second pass: - We take the entry nodes and the suffixes produced so far - We visit all the LR(0) reachable from entry nodes to gather all the lookaheads with which they can be reached - We visit all suffixes to remove the lookaheads that are already covered - We do a BFS to collect suffixes reaching LR(0) states we still have to cover. - We do a BFS to collect prefixes reaching LR(0) states we still have to cover. - Then for each LR(0) state we still have to cover, pick enough prefixes and suffixes to cover everything, update remaining things to cover. For this we will construct do a BFS, reified as a tree, in which in each branch we commit to covering the yet uncovered lookaheads. When outputting a sentence, we drop the non-productive (not covering anything new) prefix, then we update all other branches of the BFS to drop the already committed lookaheads. Woooo... Then for printing, we group sentences by their final lr0 state, which represent the right pattern. *) (* Group sentences by patterns let order (lr0, _) (lr0', _) = match Index.compare lr0 lr0' with | 0 -> (* Same lr0 *) 0 | c0 -> (* Not the same: - Order first by decreasing number of items - If same number of items, fall back to an (arbitrary) total order induced by LR(0) state number *) match Int.compare (IndexSet.cardinal (Lr0.items gr.grammar lr0)) (IndexSet.cardinal (Lr0.items gr.grammar lr0')) with | 0 -> c0 | c -> c in group_by !by_lr0 ~compare:order ~group:(fun (lr0, node) rest -> (lr0, node :: List.map snd rest)) List.iter begin fun (lr0, nodes) -> let sentences = extract_suffixes nodes in let lhs = match Lr0.incoming gr.grammar lr0 with | Some sym when Symbol.is_nonterminal gr.grammar sym -> "[_ " | Some _ | None -> "[" in let pad = String.make (String.length lhs) ' ' in let lines = let items = IndexSet.elements (Lr0.items gr.grammar lr0) in List.mapi (fun i item -> let filter = Item.to_string gr.grammar item in if i = 0 then lhs ^ "/" ^ filter else pad ^ "/" ^ filter ) items in let lines = String.concat "\n" lines ^ "]" in print_endline lines; List.iter begin fun (node, edges, handled, failing) -> let suffix = List.fold_left (fun path edge -> edge.target.ker.lrc :: List.rev_append edge.path path) [node.ker.lrc] edges in let base = List.hd suffix in let complete = List.rev_append (prefix base) suffix in let sentence = List.map gr.stacks.label complete in let sentence = List.map (Lr1.to_string gr.grammar) sentence in print_endline (String.concat " " sentence); print_endline (" for unique lookaheads: " ^ Terminal.lookaheads_to_string gr.grammar handled); let failing = IndexSet.diff failing handled in if IndexSet.is_not_empty failing then print_endline (" for redundant lookaheads: " ^ Terminal.lookaheads_to_string gr.grammar failing); end sentences; end by_lr0 *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>