package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/utils/intSet.ml.html
Source file intSet.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667module type S = SetSig.S0 (* A compressed (or should we say sparse?) bit set is a list of pairs of integers. The first component of every pair is an index, while the second component is a bit field. The list is sorted by order of increasing indices. *) type t = | N | C of int * int * t type element = int let word_size = Sys.word_size - 1 let empty = N let is_empty = function | N -> true | C _ -> false let is_not_empty = function | N -> false | C _ -> true let add i s = let ioffset = i mod word_size in let iaddr = i - ioffset and imask = 1 lsl ioffset in let rec add = function | N -> (* Insert at end. *) C (iaddr, imask, N) | C (addr, ss, qs) as s -> if iaddr < addr then (* Insert in front. *) C (iaddr, imask, s) else if iaddr = addr then (* Found appropriate cell, update bit field. *) let ss' = ss lor imask in if ss' = ss then s else C (addr, ss', qs) else (* Not there yet, continue. *) let qs' = add qs in if qs == qs' then s else C (addr, ss, qs') in add s let split i s = let ioffset = i mod word_size in let iaddr = i - ioffset and imask = 1 lsl ioffset in let rec split = function | N -> (N, false, N) | C (addr, ss, qs) as s -> if iaddr < addr then (* Stop now. *) (N, false, s) else if iaddr = addr then (* Found appropriate cell, split bit field. *) let found = ss land imask <> 0 in let l_mask = imask - 1 in let l = match ss land l_mask with | 0 -> N | ss_l -> C (addr, ss_l, N) in let r = match ss land lnot (l_mask lor imask) with | 0 -> N | ss_r -> C (addr, ss_r, qs) in (l, found, r) else (* Not there yet, continue. *) let (l, f, r) = split qs in (C (addr, ss, l), f, r) in split s let singleton i = add i N let remove i s = let ioffset = i mod word_size in let iaddr = i - ioffset and imask = 1 lsl ioffset in let rec remove = function | N -> N | C (addr, ss, qs) as s -> if iaddr < addr then s else if iaddr = addr then (* Found appropriate cell, update bit field. *) let ss' = ss land (lnot imask) in if ss' = 0 then qs else if ss' = ss then s else C (addr, ss', qs) else (* Not there yet, continue. *) let qs' = remove qs in if qs == qs' then s else C (addr, ss, qs') in remove s let rec fold f s accu = match s with | N -> accu | C (base, ss, qs) -> let ss' = ref ss in let accu = ref accu in for _ = 0 to Bit_lib.pop_count ss - 1 do let bit = Bit_lib.lsb_index !ss' in accu := f (base + bit) !accu; ss' := !ss' lxor (1 lsl bit); done; fold f qs !accu let map f t = fold (fun x xs -> add (f x) xs) t empty let filter_map f t = fold (fun x ys -> match f x with | None -> ys | Some y -> add y ys) t empty let iter f s = fold (fun x () -> f x) s () let rec rev_iter f = function | N -> () | C (base, ss, qs) -> rev_iter f qs; let ss' = ref ss in for _ = 0 to Bit_lib.pop_count ss - 1 do let bit = Bit_lib.msb_index !ss' in f (base + bit); ss' := !ss' lxor (1 lsl bit); done let rec fold_right f acc = function | N -> acc | C (base, ss, qs) -> let acc = ref (fold_right f acc qs) in let ss' = ref ss in for _ = 0 to Bit_lib.pop_count ss - 1 do let bit = Bit_lib.msb_index !ss' in acc := f !acc (base + bit); ss' := !ss' lxor (1 lsl bit); done; !acc let exists f t = let exception Found in match fold (fun elt () -> if f elt then raise Found) t () with | () -> false | exception Found -> true let is_singleton s = match s with | C (_, ss, N) -> (* Test whether only one bit is set in [ss]. We do this by turning off the rightmost bit, then comparing to zero. *) ss land (ss - 1) = 0 | C (_, _, C _) | N -> false let rec cardinal acc = function | N -> acc | C (_, mask, qs) -> cardinal (acc + Bit_lib.pop_count mask) qs let cardinal qs = cardinal 0 qs let elements s = fold_right (fun tl hd -> hd :: tl) [] s let rev_map_elements t f = fold_right (fun tl hd -> f hd :: tl) [] t let rec subset s1 s2 = match s1, s2 with | N, _ -> true | _, N -> false | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then false else if addr1 = addr2 then if (ss1 land ss2) <> ss1 then false else subset qs1 qs2 else subset s1 qs2 let rec quick_subset a1 ss1 = function | N -> false | C (a2, ss2, qs2) -> if a1 = a2 then ss1 land ss2 <> 0 else (a1 > a2 && quick_subset a1 ss1 qs2) let quick_subset s1 s2 = match s1 with | N -> true | C (a1, ss1, _) -> (* We know that, by construction, ss1 is not empty. It suffices to test s2 also has elements in common with ss1 at address a1 to determine the quick_subset relation. *) quick_subset a1 ss1 s2 let mem i s = let ioffset = i mod word_size in let iaddr = i - ioffset and imask = 1 lsl ioffset in let rec loop4 = function | C (a, _, qs) when a < iaddr -> loop4 qs | C (a, ss, _) when a = iaddr -> ss land imask != 0 | _ -> false in loop4 s let rec union s1 s2 = match s1, s2 with | N, s | s, N -> s | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then let qs = union qs1 s2 in if qs == qs1 then s1 else C (addr1, ss1, qs) else if addr1 > addr2 then let qs = union s1 qs2 in if qs == qs2 then s2 else C (addr2, ss2, qs) else let ss = ss1 lor ss2 in let qs = union qs1 qs2 in if ss = ss2 && qs == qs2 then s2 else if ss = ss1 && qs == qs1 then s1 else C (addr1, ss, qs) let rec inter s1 s2 = match s1, s2 with | N, _ | _, N -> N | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then inter qs1 s2 else if addr1 > addr2 then inter s1 qs2 else let ss = ss1 land ss2 in let qs = inter qs1 qs2 in if ss = 0 then qs else if ss = ss2 && qs == qs2 then s2 else if ss = ss1 && qs == qs1 then s1 else C (addr1, ss, qs) let fused_inter_union a b ~acc = let rec inter_loop a b acc = match a, b with | N, _ | _, N -> acc | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then inter_loop qs1 b acc else if addr1 > addr2 then inter_loop a qs2 acc else match ss1 land ss2 with | 0 -> inter_loop qs1 qs2 acc | ss -> union_loop addr1 ss qs1 qs2 acc and union_loop addr ss a b acc = match acc with | N -> C (addr, ss, inter a b) | C (addr', ss', acc') -> if addr < addr' then C (addr, ss, inter_loop a b acc') else if addr > addr' then let acc'' = union_loop addr ss a b acc' in if acc'' != acc' then C (addr', ss', acc'') else acc else (* addr = addr' *) let ss = ss lor ss' in if ss = ss' then let acc'' = inter_loop a b acc' in if acc'' != acc' then C (addr', ss', acc'') else acc else C (addr', ss, inter_loop a b acc') in inter_loop a b acc exception Found of int let choose s = try iter (fun x -> raise (Found x) ) s; raise Not_found with Found x -> x let minimum s = try iter (fun x -> raise (Found x) ) s; None with Found x -> Some x let rec maximum = function | N -> None | C (addr, ss, N) -> let i = ref 0 in let ss = ref (ss lsr 1) in while !ss > 0 do incr i; ss := !ss lsr 1 done; Some (addr + !i) | C (_, _, rest) -> maximum rest let rec compare s1 s2 = if s1 == s2 then 0 else match s1, s2 with N, N -> 0 | _, N -> 1 | N, _ -> -1 | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then -1 else if addr1 > addr2 then 1 else if ss1 < ss2 then -1 else if ss1 > ss2 then 1 else compare qs1 qs2 let equal s1 s2 = compare s1 s2 = 0 let rec disjoint s1 s2 = match s1, s2 with | N, _ | _, N -> true | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 = addr2 then if (ss1 land ss2) = 0 then disjoint qs1 qs2 else false else if addr1 < addr2 then disjoint qs1 s2 else disjoint s1 qs2 let rec diff s1 s2 = match s1, s2 with | N, _ | _, N -> s1 | C (addr1, ss1, qs1), C (addr2, ss2, qs2) -> if addr1 < addr2 then ( let qs1' = diff qs1 s2 in if qs1' == qs1 then s1 else C (addr1, ss1, qs1') ) else if addr1 > addr2 then diff s1 qs2 else let ss = ss1 land lnot ss2 in if ss = 0 then diff qs1 qs2 else let qs1' = diff qs1 qs2 in if ss = ss1 && qs1' == qs1 then s1 else C (addr1, ss, qs1') let lsb x = (x land -x) let compare_lsb x y = Int.compare (lsb x - 1) (lsb y - 1) let compare_minimum s1 s2 = match s1, s2 with | N, N -> 0 | N, _ -> -1 | _, N -> 1 | C (addr1, ss1, _), C (addr2, ss2, _) -> match Int.compare addr1 addr2 with | 0 -> compare_lsb ss1 ss2 | n -> n let sorted_union xs = List.fold_right union xs empty let rec extract_unique_prefix addr2 ss2 = function | N -> N, N | C (addr1, ss1, qs1) as self -> if addr1 < addr2 then let prefix, suffix = extract_unique_prefix addr2 ss2 qs1 in C (addr1, ss1, prefix), suffix else if addr1 > addr2 || ss1 = ss2 || compare_lsb ss1 ss2 >= 0 then N, self else (* l and r have the same address, and l has some prefix that is not part of r (lsb l < lsb r)*) let prefix_mask = (lsb ss2) - 1 in let ss0 = ss1 land prefix_mask in assert (ss0 <> 0); let ss1 = ss1 land lnot prefix_mask in if ss1 = 0 then (C (addr1, ss0, N), qs1) else (C (addr1, ss0, N), C (addr1, ss1, qs1)) let extract_unique_prefix l r = match l, r with | N, _ -> N, N | _, N -> invalid_arg "extract_unique_prefix: r < l" | l, C (addr2, ss2, _) -> extract_unique_prefix addr2 ss2 l let rec = function | C (addr1, ss1, qs1), C (addr2, ss2, qs2) when addr1 = addr2 -> if ss1 = ss2 then let common, rest = extract_shared_prefix (qs1, qs2) in (C (addr1, ss1, common), rest) else let ss1' = ss1 land lnot ss2 in let ss2' = ss2 land lnot ss1 in let common_mask = (lsb ss1' - 1) land (lsb ss2' - 1) in let rest_mask = lnot common_mask in let common = match ss1 land common_mask with | 0 -> N | n -> C (addr1, n, N) in let qs1' = match ss1 land rest_mask with | 0 -> qs1 | ss1' -> C (addr1, ss1', qs1) in let qs2' = match ss2 land rest_mask with | 0 -> qs2 | ss2' -> C (addr2, ss2', qs2) in common, (qs1', qs2') | (l, r) -> N, (l, r) let l r = extract_shared_prefix (l, r) let of_list xs = List.fold_left (fun xs x -> add x xs) empty xs let init_interval i j = let i, j = if i < j then i, j else j, i in let addr = j - j mod word_size in if addr <= i then let word = (1 lsl (j - i + 1) - 1) lsl (i - addr) in C (addr, word, N) else let rec loop2 acc addr = if addr <= i then C (addr, -1 lsl (i - addr), acc) else loop2 (C (addr, -1, acc)) (addr - word_size) in loop2 (C (addr, (-1) lsr (word_size - (j - addr + 1)), N)) (addr - word_size) let init_subset i j f = let i, j = if i < j then i, j else j, i in let rec loop3 i addr = if addr > j then N else let addr' = addr + word_size in let k = if j < addr' then j else (addr' - 1) in let word = ref 0 in for i = i to k do if f i then word := !word lor (1 lsl (i - addr)) done; let word = !word in if word = 0 then loop3 addr' addr' else C (addr, word, loop3 addr' addr') in loop3 i (i - i mod word_size) let rec filter f = function | N -> N | C (addr, word0, ss) as ss0 -> let word = ref 0 in let word' = ref word0 in for _ = 0 to Bit_lib.pop_count word0 - 1 do let bit = Bit_lib.lsb_index !word' in if f (addr + bit) then word := !word lor (1 lsl bit); word' := !word' lxor (1 lsl bit); done; if !word = 0 then filter f ss else let ss' = filter f ss in if !word = word0 && ss == ss' then ss0 else C (addr, !word, ss') let rec find f = function | N -> raise Not_found | C (a, w, ss) -> find_addr f a w ss 0 and find_addr f a w ss i = if w land (1 lsl i) <> 0 && f (a + i) then (a + i) else if i = word_size - 1 then find f ss else find_addr f a w ss (i + 1) let rec find_map f = function | N -> None | C (a, w, ss) -> find_map_addr f a w ss 0 and find_map_addr f a w ss i = match if w land (1 lsl i) = 0 then None else f (a + i) with | Some _ as result -> result | None when i = word_size - 1 -> find_map f ss | None -> find_map_addr f a w ss (i + 1) let rec allocate result = function | N -> result := 0; C (0, 1, N) | C (addr, -1, N) -> let next = addr + word_size in result := next; C (addr, -1, C (next, 1, N)) | C (addr, -1, qs) -> C (addr, -1, allocate result qs) | C (addr, word, qs) -> let i = Bit_lib.lsb_index (lnot word) in result := addr + i; C (addr, word lor (1 lsl i), qs) let allocate qs = let result = ref 0 in let qs' = allocate result !qs in qs := qs'; !result let rec to_seq q = match q with | N -> Seq.empty | C (addr, mask, q') -> c addr q' mask and c addr q' = function | 0 -> to_seq q' | mask -> let i = Bit_lib.lsb_index mask in fun () -> Seq.Cons (addr + i, c addr q' (mask lxor (1 lsl i))) let bind m f = fold (fun elt acc -> union (f elt) acc) m empty (** Split a set into consecutive “runs” of elements that share the same class. {b Parameters} - [cls : 'a element → 'b element] that assigns a class to each element. - [xs : 'a t] – the input set to be split. {b Returns} A list of pairs. Each pair is made of a class (the result of [cls] for the run) and the subset of the original elements that belong to that run (preserving the original order). *) let rec split_by_run cls = function | N -> assert false | C (base, ss, N) -> let bit = Bit_lib.msb_index ss in let key = ref (cls (base + bit)) in let mask = ref (1 lsl bit) in let ss' = ref (ss lxor (1 lsl bit)) in let accu = ref [] in for _ = 1 to Bit_lib.pop_count ss - 1 do let bit = Bit_lib.msb_index !ss' in let key' = cls (base + bit) in if Int.equal key' !key then mask := !mask lor (1 lsl bit) else ( accu := (!key, C (base, !mask, N)) :: !accu; key := key'; mask := 1 lsl bit; ); ss' := !ss' lxor (1 lsl bit); done; (!key, C (base, !mask, N), !accu) | C (base, ss, qs) -> let key, tail, accu = split_by_run cls qs in let key = ref key in let tail = ref tail in let mask = ref 0 in let accu = ref accu in let ss' = ref ss in for _ = 0 to Bit_lib.pop_count ss - 1 do let bit = Bit_lib.msb_index !ss' in let key' = cls (base + bit) in if Int.equal key' !key then mask := !mask lor (1 lsl bit) else ( if !mask <> 0 then accu := (!key, C (base, !mask, !tail)) :: !accu else accu := (!key, !tail) :: !accu; tail := N; key := key'; mask := 1 lsl bit; ); ss' := !ss' lxor (1 lsl bit); done; (!key, C (base, !mask, !tail), !accu) let split_by_run cls = function | N -> [] | set -> let (key, tail, result) = split_by_run cls set in (key, tail) :: result
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>