package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/support/lrgrep_support.ml.html
Source file lrgrep_support.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469[@@@ocaml.warning "-32-37"] open Utils open Misc open Fix.Indexing module RT = Lrgrep_runtime module Register = struct include Positive type t = n index type set = n indexset type 'a map = (n, 'a) indexmap let of_int = Index.of_int n end let add_uint24_be b i = assert (0 <= i && i <= 0xFFFFFF); Buffer.add_uint16_be b (i land 0xFFFF); Buffer.add_uint8 b (i lsr 16) module Bit_packer : sig type row val import : (int * _) list -> row type table val new_table : unit -> table val add_row : table -> row -> int val length : table -> int end = struct let bits = Sys.word_size - 1 type cell_list = | N | C of int * int * cell_list let prepend xs x = let iaddr = x / bits in let imask = 1 lsl (x mod bits) in match xs with | N -> C (iaddr, imask, N) | C (iaddr', imask', xs') -> if iaddr = iaddr' then C (iaddr, imask lor imask', xs') else ( assert (iaddr < iaddr'); C (iaddr, imask, xs) ) type row = { first: int; set: cell_list; width: int; } let import = function | [] -> {first = 0; set = N; width = 0} | (last, _) :: rest as cells -> let first = List.fold_left (fun _ (i, _) -> i) last rest in let add set (index, _) = prepend set (index - first) in let set = List.fold_left add N cells in {first; set; width = (last - first + 1)} let shift_mask mask shift = let mask0 = mask lsl shift in let mask1 = mask lsr (bits - shift) in (mask0, mask1) let compatible cells0 cells1 mask shift = let mask0, mask1 = shift_mask mask shift in (cells0 land mask0) lor (cells1 land mask1) = 0 type table = { mutable cells: int array; mutable length: int; } let rec fit_cells table oaddr oshift = function | N -> oshift | C (base, mask, cells') -> let addr = oaddr + base in let len = Array.length table in if addr >= len then oshift else let cells0 = table.(addr) in let cells1 = if addr + 1 = len then 0 else table.(addr + 1) in if compatible cells0 cells1 mask oshift then fit_cells table oaddr oshift cells' else ( let oshift = ref (oshift + 1) in while !oshift < bits && not (compatible cells0 cells1 mask !oshift) do incr oshift; done; !oshift ) let rec fit_row table oaddr oshift cells = let oshift' = fit_cells table oaddr oshift cells in if oshift' = oshift then (oaddr, oshift) else if oshift' < bits then fit_row table oaddr oshift' cells else fit_row table (oaddr + 1) 0 cells let grow_table table target = let len = Array.length table in if len > target then table else let rlen = ref len in while !rlen <= target do rlen := !rlen * 2 done; let table' = Array.make !rlen 0 in Array.blit table 0 table' 0 len; table' let rec write_cells table oaddr oshift = function | N -> table | C (base, mask, cells') -> let addr = oaddr + base in let table = grow_table table (addr + 1) in let mask0, mask1 = shift_mask mask oshift in let cells0 = table.(addr) in let cells1 = table.(addr + 1) in assert (cells0 land mask0 = 0); assert (cells1 land mask1 = 0); table.(addr + 0) <- cells0 lor mask0; table.(addr + 1) <- cells1 lor mask1; write_cells table oaddr oshift cells' let add_row table row = let addr, shift = fit_row table.cells 0 0 row.set in let cells = write_cells table.cells addr shift row.set in table.cells <- cells; let offset = addr * bits + shift in let length = offset + row.width in if length > table.length then table.length <- length; (offset - row.first) let new_table () = { cells = [|0|]; length = 0; } let length table = table.length end let debug = false module Code_emitter : sig type t val make : unit -> t val position : t -> int val emit : t -> RT.program_instruction -> unit val emit_yield_reloc : t -> RT.program_counter ref -> unit val emit_match_reloc : t -> Lrgrep_support_packer.promise -> unit val link : t -> Lrgrep_support_packer.row_mapping -> RT.program_code end = struct type t = { mutable reloc: (int * int ref) list; mutable promises: (int * Lrgrep_support_packer.promise) list; buffer: Buffer.t; } let make () = { reloc = []; promises = []; buffer = Buffer.create 15; } let position t = Buffer.length t.buffer let emit t : RT.program_instruction -> _ = fun inst -> if debug then Printf.eprintf "0x%04X: %s\n" (position t) (match inst with | RT.Store _ -> "Store" | RT.Move (_, _) -> "Move" | RT.Swap (_, _) -> "Swap" | RT.Clear _ -> "Clear" | RT.Yield _ -> "Yield" | RT.Accept (_, _, _) -> "Accept" | RT.Match _ -> "Match" | RT.Priority (_, _, _) -> "Priority" | RT.Halt -> "Halt" ); match inst with | Store i -> assert (i < 0xFF); Buffer.add_char t.buffer '\x01'; Buffer.add_uint8 t.buffer i | Move (i, j) -> assert (i < 0xFF && j < 0xFF); if i <> j then ( Buffer.add_char t.buffer '\x02'; Buffer.add_uint8 t.buffer i; Buffer.add_uint8 t.buffer j ) | Swap (i, j) -> assert (i < 0xFF && j < 0xFF); if i <> j then ( Buffer.add_char t.buffer '\x09'; Buffer.add_uint8 t.buffer i; Buffer.add_uint8 t.buffer j ) | Clear i -> assert (i < 0xFF); Buffer.add_char t.buffer '\x03'; Buffer.add_uint8 t.buffer i | Yield pos -> assert (pos <= 0xFFFFFF); Buffer.add_char t.buffer '\x04'; Buffer.add_uint16_be t.buffer (pos land 0xFFFF); Buffer.add_uint8 t.buffer (pos lsr 16) | Accept (clause, priority, registers) -> assert (Array.length registers <= 0xFF); assert (clause <= 0xFFFF); Buffer.add_char t.buffer '\x05'; Buffer.add_uint16_be t.buffer clause; Buffer.add_uint8 t.buffer priority; Buffer.add_uint8 t.buffer (Array.length registers); Array.iter (function | None -> Buffer.add_uint8 t.buffer 0xFF; | Some i -> assert (i < 0xFF); Buffer.add_uint8 t.buffer i ) registers | Match index -> Buffer.add_char t.buffer '\x06'; assert (index <= 0xFFFFFF); add_uint24_be t.buffer index | Priority (clause, p1, p2) -> Buffer.add_char t.buffer '\x08'; assert (clause <= 0xFFFF); Buffer.add_uint16_be t.buffer clause; Buffer.add_uint8 t.buffer p1; Buffer.add_uint8 t.buffer p2 | Halt -> Buffer.add_char t.buffer '\x07' let emit_yield_reloc t reloc = if debug then Printf.eprintf "0x%04X: Yield\n" (position t); Buffer.add_char t.buffer '\x04'; let pos = Buffer.length t.buffer in Buffer.add_string t.buffer " "; t.reloc <- (pos, reloc) :: t.reloc let emit_match_reloc t promise = if debug then Printf.eprintf "0x%04X: Match\n" (position t); Buffer.add_char t.buffer '\x06'; let pos = Buffer.length t.buffer in add_uint24_be t.buffer 0; t.promises <- (pos, promise) :: t.promises let link t remap = let buf = Buffer.to_bytes t.buffer in List.iter (fun (pos, reloc) -> assert (0 <= !reloc && !reloc < 0xFFFFFF); Bytes.set_uint16_be buf pos (!reloc land 0xFFFF); Bytes.set_uint8 buf (pos + 2) (!reloc lsr 16); ) t.reloc; List.iter (fun (pos, promise) -> let p = Lrgrep_support_packer.resolve remap promise in Bytes.set_uint16_be buf pos (p land 0xFFFF); Bytes.set_uint8 buf (pos + 2) (p lsr 16); ) t.promises; Printf.eprintf "bytecode size: %d\n" (Bytes.length buf); Bytes.unsafe_to_string buf end (** The action of a transition is pair of: - a possibly empty list of registers to save the current state to - a possibly empty list of priority mappings for matching clauses - a target state (index of the state in the dfa array) *) type ('clause, 'state) transition_action = { move: (Register.t * Register.t) list; store: Register.t list; clear: Register.t list; priority: ('clause index * RT.priority * RT.priority) list; target: 'state index; } type ('state, 'clause, 'lr1) state = { accept: ('clause index * RT.priority * RT.register option array) list; (** a clause to accept in this state. *) halting: 'lr1 IndexSet.t; (** The set of labels that should cause matching to halt (this can be seen as a transition to a "virtual" sink state). *) transitions: ('lr1 IndexSet.t * ('clause, 'state) transition_action) list; (** Transitions for this state, as a list of labels and actions. *) } type compact_dfa = RT.program_code * Lrgrep_support_packer.table * RT.program_counter array let compare_priority (i1, s1, t1) (i2, s2, t2) = let c = compare_index i1 i2 in if c <> 0 then c else let c = Int.compare s1 s2 in if c <> 0 then c else let c = Int.compare t1 t2 in c let compare_transition_action t1 t2 = let c = Int.compare (Index.to_int t1.target) (Index.to_int t2.target) in if c <> 0 then c else let c = List.compare (compare_pair compare_index compare_index) t1.move t2.move in if c <> 0 then c else let c = List.compare compare_index t1.store t2.store in if c <> 0 then c else let c = List.compare compare_index t1.clear t2.clear in if c <> 0 then c else let c = List.compare compare_priority t1.priority t2.priority in c let same_action a1 a2 = compare_transition_action a1 a2 = 0 (* Appendix A *) let emit_moves code moves = let n = 1 + List.fold_left (fun n (src, _dst) -> Int.max n src) (-1) moves in (* A.1 Initialization *) let aux = Array.init n Fun.id in let mark = Array.make n false in let dup = Array.make n false in List.iter (fun (j, _) -> if mark.(j) then dup.(j) <- true else mark.(j) <- true ) moves; (* A.2 First pass *) List.iter (fun (j, i) -> if mark.(j) then ( mark.(j) <- false; let j = aux.(j) in if i != j then ( if i < n && (mark.(i) || dup.(i)) then ( Code_emitter.emit code (Swap (j, i)); aux.(i) <- j ) else Code_emitter.emit code (Move (j, i)) ); aux.(j) <- i ) ) moves; (* A.3 Second pass *) List.iter (fun (j, i) -> if mark.(j) then ( Code_emitter.emit code (Move (aux.(j), i)) ) else mark.(j) <- true ) moves let compact (type dfa clause lr1) (dfa : dfa cardinal) (get_state : dfa index -> (dfa, clause, lr1) state) = let code = Code_emitter.make () in let packer = Lrgrep_support_packer.make () in let halt_pc = Code_emitter.position code in Code_emitter.emit code Halt; let pcs = Vector.init dfa (fun _ -> ref (-1)) in let emit_action {move; store; clear; priority; target} = emit_moves code (move : (_ index * _ index) list :> (int * int) list); List.iter (fun i -> Code_emitter.emit code (Store (i : _ index :> int))) store; List.iter (fun i -> Code_emitter.emit code (Clear (i : _ index :> int))) clear; List.iter (fun (c, i, j) -> Code_emitter.emit code (Priority ((c : _ index :> int), i, j)) ) priority; Code_emitter.emit_yield_reloc code pcs.:(target); in let goto_action = let table = Hashtbl.create 7 in fun action -> match Hashtbl.find_opt table action with | Some r -> r | None -> let position = Code_emitter.position code in if debug then Printf.eprintf "Action at 0x%04X\n" position; emit_action action; Hashtbl.add table action position; position in let transition_count = ref 0 in let transition_dom = ref 0 in let cell_count = ref 0 in let prepare_state index pc = let {halting; transitions; accept} = get_state index in let _, most_frequent_action = List.fold_left (fun (count, _ as default) (dom, action) -> let count' = IndexSet.cardinal dom in incr transition_count; transition_dom := !transition_dom + count'; if count' > count then (count', Some action) else default ) (IndexSet.cardinal halting, None) transitions in let prepare_transition (dom, action) = match most_frequent_action with | Some action' when same_action action action' -> None | _ -> Some (dom, goto_action action) in let other = List.filter_map prepare_transition transitions in let other = if Option.is_some most_frequent_action && IndexSet.cardinal halting > 0 then (halting, halt_pc) :: other else other in let cardinal = List.fold_left (fun acc (set, _) -> IndexSet.cardinal set + acc) 0 other in (cardinal, pc, accept, most_frequent_action, other) in let process_state (_cardinal, pc, accept, default, other_transitions) = assert (!pc = -1); pc := Code_emitter.position code; List.iter (fun (clause, priority, registers) -> Code_emitter.emit code (Accept (Index.to_int clause, priority, registers))) accept; begin match List.concat_map (fun (dom, target) -> List.map (fun x -> (x, target)) (IndexSet.elements dom)) other_transitions with | [] -> () | cells -> cell_count := !cell_count + List.length cells; let cells = (cells : (lr1 index * _) list :> (RT.lr1 * _) list) in let i = Lrgrep_support_packer.add_row packer cells in Code_emitter.emit_match_reloc code i; end; begin match default with | None -> Code_emitter.emit code Halt | Some default -> emit_action default end in let preparation = Vector.as_array (Vector.mapi prepare_state pcs) in Array.sort (fun (c1, _, _, _, _) (c2, _, _, _, _) -> Int.compare c2 c1) preparation; Array.iter process_state preparation; if debug then Vector.iteri (fun state pc -> Printf.eprintf "state % 4d at 0x%04X\n" (Index.to_int state) !pc) pcs; Printf.eprintf "total transitions: %d (domain: %d), non-default: %d\n%!" !transition_count !transition_dom !cell_count; let remap, table = Lrgrep_support_packer.pack packer Fun.id in let code = Code_emitter.link code remap in let pcs = Vector.as_array (Vector.map (!) pcs) in (code, table, pcs)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>