package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/lrgrep.interpreter/lrgrep_interpreter.ml.html
Source file lrgrep_interpreter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303open Utils open Misc open Fix.Indexing type 'terminal config = { print_reduce_filter : bool; print_stack_items : bool; (*pretty_printer : ('terminal list -> string) option;*) } let default_config = { print_reduce_filter = true; print_stack_items = false; (*pretty_printer = None;*) } let config ?(print_reduce_filter = default_config.print_reduce_filter) ?(print_stack_items = default_config.print_stack_items) (*?pretty_printer*) () = {print_reduce_filter; print_stack_items; (*pretty_printer*)} type ('a, 'p) with_position = 'a * 'p * 'p type ('lr1, 'terminal, 'p) parser_output = { stack: ('lr1, 'p) with_position list; remainder: ('terminal, 'p) with_position Seq.node; } open Kernel.Info type 'g sentence = { entrypoint: ('g lr1 index, Lexing.position) with_position option; symbols: ('g terminal index, Lexing.position) with_position list; } let lift_sentence g sentence = (* Step 1: extract optional entrypoint and symbols *) let lexbuf = Lexing.from_string ~with_positions:true sentence in Lexing.set_filename lexbuf "input"; let symbol tok = let text = match tok with | `IDENT x -> x | _ -> Syntax.nonfatal_error lexbuf.lex_start_p "expecting a symbol"; raise Exit in (text, lexbuf.lex_start_p, lexbuf.lex_curr_p) in let rec symbols acc = match Front.Lexer.sentence_interpreter lexbuf with | `EOF -> List.rev acc | other -> symbols (symbol other :: acc) in let entrypoint, symbols = let candidate = symbol (Front.Lexer.sentence_interpreter lexbuf) in match Front.Lexer.sentence_interpreter lexbuf with | `EOF -> None, [candidate] | `COLON -> (Some candidate, symbols []) | other -> (None, symbols [symbol other; candidate]) in (* Step 2: lift to grammatical entities *) let lift_entrypoint (sym, startp, endp) = let entrypoints = Lr1.entrypoint_table g in match Hashtbl.find_opt entrypoints sym with | None -> Syntax.nonfatal_error startp "unknown entrypoint %S%a\n" sym (print_dym (fun (_,s,_) -> s)) (Damerau_levenshtein.filter_approx ~dist:10 sym (Hashtbl.to_seq entrypoints)); raise Exit | Some sym -> (sym, startp, endp) in let lift_terminal (sym, startp, endp) = match Terminal.find g sym with | Result.Ok t -> (t, startp, endp) | Result.Error dym -> Syntax.nonfatal_error startp "unknown terminal %S%a\n" sym (print_dym (fun (_,s,_) -> s)) dym; raise Exit in let entrypoint = Option.map lift_entrypoint entrypoint in let symbols = List.map lift_terminal symbols in { entrypoint; symbols } let print_loc ((loc_start : Lexing.position), (loc_end : Lexing.position)) = if loc_start = Lexing.dummy_pos then " \t" else let sprintf = Printf.sprintf in let sline = loc_start.pos_lnum in let scol = loc_start.pos_cnum - loc_start.pos_bol in let eline = loc_end.pos_lnum in let ecol = loc_end.pos_cnum - loc_end.pos_bol in if sline = eline then sprintf "line %d:%d-%d\t" sline scol ecol else sprintf "from %d:%d to %d:%d\t" sline scol eline ecol let print_items grammar indent suffix items = Printf.printf "\t\t%s\x1b[0;32m[%s" (String.make indent ' ') suffix; let pad = String.make (indent + 1 + String.length suffix) ' ' in let first = ref true in IndexSet.iter (fun item -> if !first then first := false else Printf.printf "\n\t\t%s" pad; Printf.printf " / %s" (Item.to_string grammar item); ) items; Printf.printf "]\n" let print_lr1 grammar state = match Lr1.incoming grammar state with | None -> None | Some sym -> Some (Symbol.to_string grammar sym) let print_stack grammar config ~is_goto stack = let top = List.hd stack in let stack = List.rev stack in let stack = if is_goto then stack else List.tl stack in let stack = List.filter_map (Lr1.incoming grammar) stack in if config.print_reduce_filter then print_items grammar (if is_goto then 2 else 0) "_*" (Lr1.items grammar top); if is_goto then Printf.printf "\t\t\x1b[1;33m↱ %s\n" (string_concat_map " " (Symbol.to_string grammar) stack) let rec filter_reductions la = function | [] -> [] | x :: xs -> let y = IndexMap.filter_map (fun _ la' -> match IndexSet.inter la la' with | la when IndexSet.is_empty la -> None | la -> Some la ) x in match filter_reductions la xs with | [] when IndexMap.is_empty y -> [] | ys -> y :: ys let rec merge_reductions = function | [], xs | xs, [] -> xs | x :: xs, y :: ys -> let xy = IndexMap.union (fun _ la la' -> Some (IndexSet.union la la')) x y in let xys = merge_reductions (xs, ys) in xy :: xys let analyze_stack grammar (rcs : (_, _ Kernel.Redgraph.reduction_closure) vector) config ~stack ~remainder = Format.printf "Parser stack (most recent first):\n%!"; let failing = ref IndexSet.empty in let outer = ref [] in let reached_state ~is_goto lookaheads state = let rc = rcs.:(state) in outer := merge_reductions (!outer, filter_reductions lookaheads rc.reductions); failing := IndexSet.fused_inter_union rc.failing lookaheads ~acc:!failing; let rec visit_stacks (stack, lookaheads', sub') = if not (IndexSet.disjoint lookaheads lookaheads') then ( print_stack grammar config ~is_goto stack; List.iter visit_stacks sub'.Kernel.Redgraph.subs ) in visit_stacks ([state], lookaheads, rc.stacks) in List.iteri begin fun i (state, start, stop) -> let simulate_gotos nts = IndexMap.iter begin fun nt lookaheads -> reached_state ~is_goto:true lookaheads (Transition.find_goto_target grammar state nt) end nts in let rec simulate_reductions () = match !outer with | [] -> () | x :: xs when IndexMap.is_empty x -> outer := xs | x :: xs -> outer := IndexMap.empty :: xs; simulate_gotos x; simulate_reductions () in if i = 0 then reached_state ~is_goto:false (Terminal.regular grammar) state else simulate_reductions (); let items = Lr1.items grammar state in if config.print_stack_items then ( print_string "\x1b[0;36m"; IndexSet.iter (fun item -> print_endline ("\t\t[" ^ Item.to_string grammar item ^ "]")) items; ); print_string "\x1b[0m- "; print_string (print_loc (start, stop)); print_string "\x1b[1m"; begin match print_lr1 grammar state with | None -> let prod = Option.get (Lr1.is_entrypoint grammar state) in print_endline (Symbol.to_string grammar (Production.rhs grammar prod).(0)) | Some sym -> print_endline sym end; print_string "\x1b[0m"; end stack; if not (list_is_empty remainder) then Printf.printf "Remaining input:\n %s\n" (string_concat_map " " (Terminal.to_string grammar) remainder); if IndexSet.is_not_empty !failing then Printf.printf "Rejected lookahead symbols:\n %s\n" (string_concat_map ", " (Terminal.to_string grammar) (List.rev (IndexSet.elements !failing))) type 'g parser = { grammar: 'g grammar; table: ('g lr1 index * 'g terminal index, [ `Reduce of 'g production index | `Reject | `Shift of 'g lr1 index ]) Hashtbl.t } (* A parser for [grammar] with a lazily populated action table *) let make_parser (type g) (grammar : g grammar) : g parser = { grammar; table = Hashtbl.create 7 } (* Lookup and memoize parser actions *) let get_action parser state terminal = let g = parser.grammar in match Lr1.default_reduction g state with | Some prod -> `Reduce prod | None -> let key = (state, terminal) in match Hashtbl.find_opt parser.table key with | Some action -> action | None -> let action = match IndexSet.find (fun red -> let la = Reduction.lookaheads g red in IndexSet.mem terminal la) (Reduction.from_lr1 g state) with | red -> `Reduce (Reduction.production g red) | exception Not_found -> let sym = Symbol.inj_t g terminal in match IndexSet.find (fun tr -> Index.equal sym (Transition.symbol g tr)) (Transition.successors g state) with | tr -> `Shift (Transition.target g tr) | exception Not_found -> `Reject in Hashtbl.add parser.table key action; action let parse_sentence (type g p) (parser : g parser) (entrypoint : (g lr1 index, p) with_position) (symbols : (g terminal index, p) with_position Seq.t) = (* Process a sentence *) let rec consume_terminal stack (t, startp, endp as token) = let (state, _, currp) = List.hd stack in match get_action parser state t with | `Reject -> Result.Error stack | `Shift state -> Result.Ok ((state, startp, endp) :: stack) | `Reduce prod -> let (stack, startp', endp') = match Production.length parser.grammar prod with | 0 -> (stack, currp, currp) | n -> let (_, _, endp) = List.hd stack in let stack = list_drop (n - 1) stack in let (_, startp, _) = List.hd stack in let stack = List.tl stack in (stack, startp, endp) in let (state, _, _) = List.hd stack in let state' = Transition.find_goto_target parser.grammar state (Production.lhs parser.grammar prod) in let stack = (state', startp', endp') :: stack in consume_terminal stack token in let rec loop stack ts = match ts () with | Seq.Nil -> (stack, stack, Seq.empty) | Seq.Cons (t, ts') as ts0 -> match consume_terminal stack t with | Result.Ok stack' -> loop stack' ts' | Result.Error stack' -> (stack, stack', fun () -> ts0) in loop [entrypoint] symbols
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>