package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/fix/Indexing.ml.html
Source file Indexing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497(******************************************************************************) (* *) (* Fix *) (* *) (* François Pottier, Inria Paris *) (* *) (* Copyright Inria. All rights reserved. This file is distributed under the *) (* terms of the GNU Library General Public License version 2, with a *) (* special exception on linking, as described in the file LICENSE. *) (* *) (******************************************************************************) (* A suspension is used to represent a cardinal-that-may-still-be-unknown. *) type 'n cardinal = Cardinal : int Lazy.t -> unit cardinal [@@ocaml.unboxed] (* The function [cardinal] forces the cardinal to become fixed. *) let cardinal (type n) (Cardinal c : n cardinal) = Lazy.force_val c let is_val (type n) (Cardinal l : n cardinal) = Lazy.is_val l type (_, _) eq = Refl : ('a, 'a) eq let assert_equal_cardinal (type n m) (n : n cardinal) (m : m cardinal) : (n, m) eq = let Cardinal n = n in let Cardinal m = m in if not (Int.equal (Lazy.force_val n) (Lazy.force_val m)) then invalid_arg "Indexing.equal_cardinal: not equal"; Refl let check_equal_cardinal (type n m) (n : n cardinal) (m : m cardinal) : (n, m) eq option = let Cardinal n = n in let Cardinal m = m in if Int.equal (Lazy.force_val n) (Lazy.force_val m) then Some Refl else None type 'n index = int module type CARDINAL = sig type n val n : n cardinal end (* [Empty] and [Const] produce sets whose cardinal is known. *) module Empty = struct type n = unit let n = Cardinal (lazy 0) end module Unit = struct type n = unit let n = Cardinal (lazy 1) let element = 0 end (**{!Opt} adds one element to a set. *) module Opt = struct type 'n n = unit let none : 'n n index = 0 let some : 'n index -> 'n n index = succ let prj = function | 0 -> None | i -> Some (i - 1) let is_none x = x = none let cardinal (type n) (Cardinal n : n cardinal) = if Lazy.is_val n then let n = 1 + Lazy.force_val n in Cardinal (lazy n) else Cardinal (Lazy.map succ n) end type 'n opt = 'n Opt.n module Const (X : sig val cardinal : int end) : CARDINAL = struct type n = unit let () = assert (X.cardinal >= 0) let n = Cardinal (lazy X.cardinal) end let const c : (module CARDINAL) = assert (c >= 0); (module struct type n = unit let n = Cardinal (lazy c) end) module type UNSAFE_CARDINAL = sig type 'a t module Const(M : sig type t val cardinal : int end) : CARDINAL with type n = M.t t module Eq(M : sig type t include CARDINAL end) : sig val eq : (M.t t, M.n) eq end end module Unsafe_cardinal() : UNSAFE_CARDINAL = struct type 'a t = unit module Const(M : sig type t val cardinal : int end) = struct type n = M.t t let n : n cardinal = Cardinal (lazy (M.cardinal)) end module Eq(M : sig type t include CARDINAL end) = struct let eq : (M.t t, M.n) eq = let Cardinal _ = M.n in Refl end end (* [Gensym] produces a set whose cardinal is a priori unknown. A new reference stores the current cardinal, which grows when [fresh()] is invoked. [fresh] fails if the suspension [n] has been forced. *) module Gensym () = struct type n = unit let counter = ref 0 let n = Cardinal (lazy !counter) let fresh () = assert (not (is_val n)); let result = !counter in incr counter; result end type ('l, 'r) either = | L of 'l | R of 'r module Sum = struct type (_, _) n = unit module type S = sig type l and r type nonrec n = (l, r) n include CARDINAL with type n := n val inj_l : l index -> n index val inj_r : r index -> n index val prj : n index -> (l index, r index) either end module Make (L : CARDINAL)(R : CARDINAL) = struct type l = L.n type r = R.n type nonrec n = (l, r) n (* The cardinal [l] of the left-hand set becomes fixed now (if it wasn't already). We need it to be fixed for our injections and projections to make sense. *) let l : int = cardinal L.n (* The right-hand set can remain open-ended. *) let r : r cardinal = R.n let n : n cardinal = (* We optimize the case where [r] is fixed already, but the code in the [else] branch would work always. *) if is_val r then let n = l + cardinal r in Cardinal (lazy n) else Cardinal (lazy (l + cardinal r)) (* Injections. The two sets are numbered side by side. *) let inj_l x = x let inj_r y = l + y (* Projection. *) let prj x = if x < l then L x else R (x - l) end let cardinal (type l r) (l : l cardinal) (r : r cardinal) : (l, r) n cardinal = let c = cardinal l + cardinal r in Cardinal (lazy c) let inj_l x = x let inj_r (type l r) (Cardinal l : l cardinal) (x : r index) = Lazy.force_val l + x let prj (type l r) (Cardinal l : l cardinal) (x : (l, r) n index) : (l index, r index) either = let l = Lazy.force_val l in if x < l then L x else R (x - l) let make (type l r) (l : l cardinal) (r : r cardinal) = let module L = struct type n = l let n = l end in let module R = struct type n = r let n = r end in (module Make(L)(R) : S with type l = l and type r = r) end module Prod = struct type (_, _) n = unit module type S = sig type l and r type nonrec n = (l, r) n include CARDINAL with type n := n val inj : l index -> r index -> n index val prj : n index -> l index * r index end module Make (L : CARDINAL)(R : CARDINAL) = struct type n = unit type l = L.n type r = R.n (* The cardinal [l] of the left-hand set becomes fixed now (if it wasn't already). We need it to be fixed for our injections and projections to make sense. *) let l : int = cardinal L.n (* The right-hand set can remain open-ended. *) let r : r cardinal = R.n let n : n cardinal = (* We optimize the case where [r] is fixed already, but the code in the [else] branch would work always. *) if is_val r then let n = l * cardinal r in Cardinal (lazy n) else Cardinal (lazy (l * cardinal r)) (* Injections. The two sets are numbered side by side. *) let inj x y = y * l + x (* Projection. *) let prj x = (x mod l, x / l) end let cardinal (type l r) (Cardinal l : l cardinal) (Cardinal r : r cardinal) : (l, r) n cardinal = let l = Lazy.force_val l in if Lazy.is_val r then let c = l * Lazy.force_val r in Cardinal (lazy c) else Cardinal (lazy (l * Lazy.force_val r)) let inj (type l) (Cardinal l : l cardinal) lx rx = lx + rx * (Lazy.force_val l) let prj (type l) (Cardinal l : l cardinal) x = let l = Lazy.force_val l in (x mod l, x / l) let make (type l r) (l : l cardinal) (r : r cardinal) = let module L = struct type n = l let n = l end in let module R = struct type n = r let n = r end in (module Make(L)(R) : S with type l = l and type r = r) end module Index = struct type 'n t = 'n index let of_int (n : 'n cardinal) i : 'n index = let n = cardinal n in if i < 0 || i >= n then invalid_arg "Index.of_int"; i let to_int i = i let iter (n : 'n cardinal) (yield : 'n index -> unit) = let n = cardinal n in for i = 0 to n - 1 do yield i done let rev_iter (n : 'n cardinal) (yield : 'n index -> unit) = let n = cardinal n in for i = n - 1 downto 0 do yield i done let seq_init n f = if n < 0 then invalid_arg "seq_init: n < 0" else if n = 0 then Seq.empty else let j = n - 1 in let rec aux i () = if i = j then Seq.Cons (f i, Seq.empty) else Seq.Cons (f i, aux (i + 1)) in aux 0 let init_seq (n : 'n cardinal) f = seq_init (cardinal n) f let rev_init_seq (n : 'n cardinal) f = let n = cardinal n in let n' = n - 1 in seq_init n (fun i -> f (n' - i)) exception End_of_set let enumerate (n : 'n cardinal) : unit -> 'n index = let n = cardinal n in let next = ref 0 in fun () -> let i = !next in if n <= i then raise End_of_set; incr next; i let rev_enumerate (n : 'n cardinal) : unit -> 'n index = let n = cardinal n in let next = ref (n - 1) in fun () -> let i = !next in if i < 0 then raise End_of_set; decr next; i let pred = function | 0 -> None | i -> Some (pred i) let equal = Int.equal let compare = Int.compare let minimum = Int.min let maximum = Int.max module Unsafe = struct module type T = sig type 'a t end module type F = functor (X : T) -> sig module type S end module Int = struct type 'a t = int end module Index = Int module Coerce (F: F) (X : F(Int).S) : F(Index).S = X end end type ('n, 'a) vector = Vector : 'a array -> (unit, 'a) vector [@@ocaml.unboxed] module Vector = struct type ('n, 'a) t = ('n, 'a) vector let get (type n) (Vector a : (n, _) t) i = Array.unsafe_get a i let set (type n) (Vector a : (n, _) t) i x = Array.unsafe_set a i x let set_cons t i x = set t i (x :: get t i) let length_as_int (type n) (Vector a : (n, _) vector) = Array.length a let length (type n) (Vector a : (n, _) t) : n cardinal = let n = Array.length a in Cardinal (lazy n) let empty : (Empty.n, _) t = Vector [||] let make (type n) (Cardinal n : n cardinal) x : (n, _) t = Vector (Array.make (Lazy.force_val n) x) let make' (type n) (Cardinal n : n cardinal) f : (n, _) t= match Lazy.force_val n with | 0 -> empty | n -> Vector (Array.make n (f())) let init (type n) (Cardinal n : n cardinal) f : (n, _) t= Vector (Array.init (Lazy.force_val n) f) let map (type n) f (Vector a : (n, _) t) : (n, _) t = Vector (Array.map f a) let mapi (type n) f (Vector a : (n, _) t) : (n, _) t = Vector (Array.mapi f a) let copy (type n) (Vector a : (n, _) t) : (n, _) t = Vector (Array.copy a) let equal (type n) eq (Vector a : (n, _) t) (Vector b : (n, _) t) = let rec loop i j = if i = j then true else if eq (Array.unsafe_get a i) (Array.unsafe_get b i) then loop (i + 1) j else false in loop 0 (Array.length a) let compare (type n) cmp (Vector a : (n, _) t) (Vector b : (n, _) t) = let rec loop i j = if i = j then 0 else let c = cmp (Array.unsafe_get a i) (Array.unsafe_get b i) in if c <> 0 then c else loop (i + 1) j in loop 0 (Array.length a) let for_all (type n) f (Vector a : (n, _) t) = Array.for_all f a let exists (type n) f (Vector a : (n, _) t) = Array.exists f a let iter (type n) f (Vector a : (n, _) t) = Array.iter f a let iteri (type n) f (Vector a : (n, _) t) = Array.iteri f a let iter2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) = Array.iter2 f a b let fold_left (type n) f acc (Vector a : (n, _) t) = Array.fold_left f acc a let fold_left2 (type n) f acc (Vector a : (n, _) t) (Vector b : (n, _) t) = let acc = ref acc in for i = 0 to Array.length a - 1 do acc := f !acc a.(i) b.(i) done; !acc let fold_lefti (type n) f acc (Vector a : (n, _) t) = let acc = ref acc in for i = 0 to Array.length a - 1 do acc := f !acc i a.(i) done; !acc let fold_lefti2 (type n) f acc (Vector a : (n, _) t) (Vector b : (n, _) t) = let acc = ref acc in for i = 0 to Array.length a - 1 do acc := f !acc i a.(i) b.(i) done; !acc let fold_right (type n) f (Vector a : (n, _) t) acc = Array.fold_right f a acc let fold_right2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) acc = let acc = ref acc in for i = Array.length a - 1 downto 0 do acc := f a.(i) b.(i) !acc done; !acc let fold_righti (type n) f (Vector a : (n, _) t) acc = let acc = ref acc in for i = Array.length a - 1 downto 0 do acc := f i a.(i) !acc done; !acc let fold_righti2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) acc = let acc = ref acc in for i = Array.length a - 1 downto 0 do acc := f i a.(i) b.(i) !acc done; !acc let rev_iteri (type n) f (Vector a : (n, _) t) = for i = Array.length a - 1 downto 0 do f i a.(i) done let as_array (type n) (Vector a : (n, _) t) = a let to_list (type n) (Vector a : (n, _) t) = Array.to_list a let cast_array (type n) (Cardinal n : n cardinal) arr : (n, _) t = if Lazy.force_val n <> Array.length arr then invalid_arg "Vector.cast_array: incorrect length"; Vector arr type 'a packed = Packed : (_, 'a) vector -> 'a packed let of_array a = Packed (Vector a) let of_list l = Packed (Vector (Array.of_list l)) module type V = sig type n type a val vector : (n, a) t end module Of_array (A : sig type a val array : a array end) = struct type n = unit type a = A.a let vector = Vector A.array end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>