package lrgrep

  1. Overview
  2. Docs
Analyse the stack of a Menhir-generated LR parser using regular expressions

Install

dune-project
 Dependency

Authors

Maintainers

Sources

lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55

doc/fix/Fix/GraphNumbering/index.html

Module Fix.GraphNumberingSource

This module offers a facility for discovering and numbering the reachable vertices in a finite directed graph.

Sourcemodule Make (M : sig ... end) (G : sig ... end) : sig ... end

Make(M)(G) produces a numbering of the graph G, or more precisely, of the subset of the vertices of G that are reachable from the roots. The type of the vertices must be equipped with an implementation of imperative maps.

Sourcemodule ForOrderedType (T : sig ... end) (G : sig ... end) : sig ... end

ForOrderedType is a special case of Make where it suffices for the vertices of G to be ordered.

Sourcemodule ForHashedType (T : sig ... end) (G : sig ... end) : sig ... end

ForHashedType is a special case of Make where it suffices for the vertices of G to be hashed.

Sourcemodule ForType (T : sig ... end) (G : sig ... end) : sig ... end

ForType is a special case of Make where the vertices of G can have arbitrary type. OCaml's built-in generic equality and hash functions are used.