package lp

  1. Overview
  2. Docs

Module Lp.PolySource

Module for polynomial expression type

Sourcetype t

Type for the polynomial with order up to two (quadratic).

Sourcetype classified = {
  1. const : t;
  2. linear : t;
  3. quad : t;
}

Type for the polynomial classified by orders

Sourcetype decomposed = {
  1. const : float;
  2. lcs : float list;
  3. lvs : Var.t list;
  4. qcs : float list;
  5. qv0s : Var.t list;
  6. qv1s : Var.t list;
}

Type for the decomposed expression of the polynomial

Sourceval c : float -> t

Make monomial of a constant value

Sourceval var : ?integer:bool -> ?lb:float -> ?ub:float -> string -> t

Make monomial of a variable

Sourceval of_var : Var.t -> t

Make monomial from a Var.t

Sourceval of_term : Term.t -> t

Make monomial from a Term.t

Sourceval binary : string -> t

Make monomial of a binary variable

Sourceval range : ?integer:bool -> ?lb:float -> ?ub:float -> ?start:int -> int -> string -> t array

Make an array of monomials of a variable with uniform bounds

Sourceval range2 : ?integer:bool -> ?lb:float -> ?ub:float -> ?start0:int -> ?start1:int -> int -> int -> string -> t array array

Make 2D array of monomials of a variable with uniform bounds

Sourceval range3 : ?integer:bool -> ?lb:float -> ?ub:float -> ?start0:int -> ?start1:int -> ?start2:int -> int -> int -> int -> string -> t array array array

Make 3D array of monomials of a variable with uniform bounds

Sourceval rangeb : ?start:int -> int -> string -> t array

Make an array of monomials of a binary variable

Sourceval range2b : ?start0:int -> ?start1:int -> int -> int -> string -> t array array

Make 2D array of monomials of a binary variable

Sourceval range3b : ?start0:int -> ?start1:int -> ?start2:int -> int -> int -> int -> string -> t array array array

Make 3D array of monomials of a binary variable

Sourceval rangev : ?integer:bool -> ?lb:float array -> ?ub:float array -> ?start:int -> int -> string -> t array

Make an array of monomials of a variable with different bounds

Sourceval range2v : ?integer:bool -> ?lb:float array array -> ?ub:float array array -> ?start0:int -> ?start1:int -> int -> int -> string -> t array array

Make 2D array of monomials of a variable with different bounds

Sourceval range3v : ?integer:bool -> ?lb:float array array array -> ?ub:float array array array -> ?start0:int -> ?start1:int -> ?start2:int -> int -> int -> int -> string -> t array array array

Make 3D array of monomials of a variable with different bounds

Sourceval concat : t array -> t

Concatenate an array of polynomials into single polynomial

Sourceval concat_list : t list -> t

Concatenate a list of polynomials into single polynomial

Sourceval of_float_array : float array -> t

Convert a float array into a polynomial

Sourceval of_term_list : Term.t list -> t

Convert a list of terms into a polynomial

Sourceval to_float : t -> float

Convert a Constant monomial to float. * Raises Failure if it's not constant monomial

Sourceval zero : t

Constant zero

Sourceval one : t

Constant one

Sourceval sort : t -> t

Sort terms in the polynomial

Sourceval to_string : ?short:bool -> t -> string

Get string expression of the polynomial

Sourceval partition : t -> t * t

Partition terms into pair ( quad or linear, const )

Sourceval classify : t -> classified

Classify terms into three categories quad, linear, const

Sourceval decompose : t -> decomposed

Decompose the polynomial into const, lcs, lvs, qcs, qv0s, qv1s

Sourceval collision : t -> bool

Check if any variable collision exist in the polynomial

Sourceval simplify : ?eps:float -> t -> t

Simplify the polynomial. The polynomial is sorted and terms with same variables are accumulated. After that, near-zero terms are dropped. eps specifies the threshold of near-zero, defaulting to 10. *. epsilon_float.

Sourceval degree : t -> int

Get the degree of polynomial

Sourceval take_vars : t -> Var.t list

List up all the variables in the polynomial

Sourceval uniq_vars : t -> Var.t list

List up all the unique variables in the polynomial

Sourceval linear_coeff : t -> Var.t -> float

take linear coefficient of a variable in a polynomial

Sourceval quad_coeff : t -> Var.t -> Var.t -> float

take quad coefficient of the variables in a polynomial

Sourceval neg : t -> t

Negate the whole polynomial

Sourceval (~--) : t -> t

Negate the whole polynomial

Sourceval (++) : t -> t -> t

Add (concatenate) two polynomials

Sourceval (--) : t -> t -> t

Subtract two polynomials (concatenate left with negated right )

Sourceval expand : t -> t -> t

Multiply two polynomials. specifically, performs polynomial expansion.

Sourceval (*~) : t -> t -> t

Multiply two polynomials. specifically, performs polynomial expansion.

Sourceval dot : t -> t -> t

Regard two polynomials as vectors and take dot product.

Sourceval (*@) : t -> t -> t

Regard two polynomials as vectors and take dot product.

Sourceval equiv : ?eps:float -> t -> t -> bool

Check if two polynomials are equivalent

Sourceval divt : t -> Term.t -> t

Divide polynomial by a term.

Sourceval div : t -> t -> t

Divide polynomial by a univariate polynomial. Be careful as this function raises exception in following cases.

    Sourceval (/~) : t -> t -> t

    equivalent to div

    Sourceval trans_bound : string -> float -> float -> t -> t

    trans_bound name lb ub transforms the bounds of the variable name with lb and ub

    Sourceval to_integer : string -> t -> t

    to_integer name transforms the variable name into general integer variable

    Sourceval to_binary : string -> t -> t

    to_integer name transforms the variable name into binary variable

    Sourceval double_quad : t -> t

    double the coefficients in all quadratic terms in the polynomial

    Sourceval half_quad : t -> t

    half the coefficients in all quadratic terms in the polynomial

    Sourceval map : (Term.t -> 'a) -> t -> 'a list

    apply a function to all terms in the polynomial and build a list

    Sourceval map_linear : (float -> Var.t -> 'a) -> t -> 'a list

    apply a function only to linear terms in the polynomial and build a list. * Raise Failure if non-linear terms exist.

    Sourceval mapi : (int -> Term.t -> 'a) -> t -> 'a list

    apply a function to all terms in the polynomial and build a list

    Sourceval iter : (Term.t -> unit) -> t -> unit

    apply a function to all terms in the polynomial

    Sourceval iteri : (int -> Term.t -> unit) -> t -> unit

    apply a function to all terms in the polynomial

    Sourceval iter_linear : (float -> Var.t -> unit) -> t -> unit

    apply a function only to linear terms in the polynomial. * non-linear terms are just ignored.

    Sourceval iter_linear_exn : (float -> Var.t -> unit) -> t -> unit

    apply a function only to linear terms in the polynomial. * Raise Failure if non-linear terms exist.

    Sourceval length : t -> int
    Sourceval take_linear_coeffs : t -> float list
    OCaml

    Innovation. Community. Security.