package logtk

  1. Overview
  2. Docs
Core types and algorithms for logic

Install

dune-project
 Dependency

Authors

Maintainers

Sources

1.5.1.tar.gz
md5=cc320f66f10555c54822da624419e003
sha512=f8d5f7a5ae790bf0388d74261673803cf375f91f92f7b413b70db1ce5841ef55343a208f98727c8551d66f1840ab892f1c0c943a34861d14d79ce469b235a2f2

doc/src/logtk/Builtin.ml.html

Source file Builtin.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

(* This file is free software, part of Logtk. See file "license" for more details. *)

(** {1 Builtin Objects} *)

module Fmt = CCFormat

type t =
  | Not
  | And
  | Or
  | Imply
  | Equiv
  | Xor
  | Eq
  | Neq
  | HasType
  | True
  | False
  | Arrow
  | Wildcard
  | Multiset  (* type of multisets *)
  | TType (* type of types *)
  | Prop
  | Term
  | ForallConst (** constant for simulating forall *)
  | ExistsConst (** constant for simulating exists *)
  | Grounding (** used for inst-gen *)
  | TyInt
  | TyRat
  | TyReal
  | Int of Z.t
  | Rat of Q.t
  | Real of string
  | Floor
  | Ceiling
  | Truncate
  | Round
  | Prec
  | Succ
  | Sum
  | Difference
  | Uminus
  | Product
  | Quotient
  | Quotient_e
  | Quotient_t
  | Quotient_f
  | Remainder_e
  | Remainder_t
  | Remainder_f
  | Is_int
  | Is_rat
  | To_int
  | To_rat
  | Less
  | Lesseq
  | Greater
  | Greatereq
  | Box_opaque (** hint not to open this formula *)
  | Pseudo_de_bruijn of int (** magic to embed De Bruijn indices in normal terms *)

type t_ = t

let to_int_ = function
  | Not -> 0
  | And -> 1
  | Or -> 2
  | Imply -> 3
  | Equiv -> 4
  | Xor -> 5
  | Eq -> 6
  | Neq -> 7
  | HasType -> 8
  | False -> 10
  | True -> 11 (* bigger than false *)
  | Arrow -> 12
  | Wildcard -> 13
  | Multiset -> 14
  | TType -> 15
  | Int _ -> 16
  | Rat _ -> 17
  | Prop -> 18
  | Term -> 19
  | TyRat -> 20
  | TyInt -> 21
  | Floor -> 22
  | Ceiling -> 23
  | Truncate -> 24
  | Round -> 25
  | Prec -> 26
  | Succ -> 27
  | Sum -> 28
  | Difference -> 29
  | Uminus -> 30
  | Product -> 31
  | Quotient -> 32
  | Quotient_e -> 33
  | Quotient_t -> 34
  | Quotient_f -> 35
  | Remainder_e -> 36
  | Remainder_t -> 37
  | Remainder_f -> 38
  | Is_int -> 39
  | Is_rat -> 40
  | To_int -> 41
  | To_rat -> 42
  | Less -> 43
  | Lesseq -> 44
  | Greater -> 45
  | Greatereq -> 46
  | ForallConst -> 47
  | ExistsConst -> 48
  | Grounding -> 50
  | Box_opaque -> 60
  | TyReal -> 70
  | Real _ -> 71
  | Pseudo_de_bruijn _ -> 100

let compare a b = match a, b with
  | Int i, Int j -> Z.compare i j
  | Rat i, Rat j -> Q.compare i j
  | _ -> to_int_ a - to_int_ b

let equal a b = compare a b = 0

let hash s = match s with
  | Int i -> Hash.combine2 1 (Z.hash i)
  | Rat r -> Hash.combine2 2 (Hash.string (Q.to_string r))
  | c -> Hash.combine2 3 (Hashtbl.hash c)

module Map = Iter.Map.Make(struct type t = t_ let compare = compare end)
module Set = Iter.Set.Make(struct type t = t_ let compare = compare end)
module Tbl = Hashtbl.Make(struct type t = t_ let equal = equal let hash = hash end)

let is_int = function Int _ -> true | _ -> false
let is_rat = function Rat _ -> true | _ -> false
let is_numeric = function Int _ | Rat _ -> true | _ -> false
let is_not_numeric x = not (is_numeric x)

let is_arith = function
  | Int _ | Rat _ | Floor | Ceiling | Truncate | Round | Prec | Succ | Sum
  | Difference | Uminus | Product | Quotient | Quotient_e | Quotient_t
  | Quotient_f | Remainder_e | Remainder_t | Remainder_f | Is_int | Is_rat
  | To_int | To_rat | Less | Lesseq | Greater | Greatereq -> true
  | _ -> false

let to_string s = match s with
  | Int n -> Z.to_string n
  | Rat n -> Q.to_string n
  | Real r -> r
  | Not -> "¬"
  | And -> "∧"
  | Or -> "∨"
  | Imply -> "⇒"
  | Equiv -> "≡"
  | Xor -> "<~>"
  | Eq -> "="
  | Neq -> "≠"
  | HasType -> ":"
  | True -> "true"
  | False -> "false"
  | Arrow -> "→"
  | Wildcard -> "_"
  | Multiset -> "Ms"
  | TType -> "type"
  | Prop -> "prop"
  | Term -> "ι"
  | ForallConst -> "·∀"
  | ExistsConst -> "·∃"
  | Grounding -> "★"
  | TyInt -> "int"
  | TyRat -> "rat"
  | TyReal -> "real"
  | Floor -> "floor"
  | Ceiling -> "ceiling"
  | Truncate -> "truncate"
  | Round -> "round"
  | Prec -> "prec"
  | Succ -> "succ"
  | Sum -> "+"
  | Difference -> "-"
  | Uminus -> "uminus"
  | Product -> "×"
  | Quotient -> "/"
  | Quotient_e -> "quotient_e"
  | Quotient_t -> "quotient_t"
  | Quotient_f -> "quotient_f"
  | Remainder_e -> "remainder_e"
  | Remainder_t -> "remainder_t"
  | Remainder_f -> "remainder_f"
  | Is_int -> "is_int"
  | Is_rat -> "is_rat"
  | To_int -> "to_int"
  | To_rat -> "to_rat"
  | Less -> "<"
  | Lesseq -> "≤"
  | Greater -> ">"
  | Greatereq -> "≥"
  | Box_opaque -> "<box>"
  | Pseudo_de_bruijn i -> Printf.sprintf "db_%d" i

let pp out s = Format.pp_print_string out (to_string s)

type fixity =
  | Infix_binary
  | Infix_nary
  | Prefix

let fixity = function
  | And | Or ->
    Infix_nary
  | Imply | Equiv | Xor | Eq | Neq | HasType
  | Sum | Difference | Product
  | Quotient | Quotient_e | Quotient_f | Quotient_t
  | Remainder_e | Remainder_t | Remainder_f
  | Less | Lesseq | Greater | Greatereq ->
    Infix_binary
  | _ -> Prefix

let is_prefix o = fixity o = Prefix
let is_infix o = match fixity o with Infix_nary | Infix_binary -> true | Prefix -> false

let ty = function
  | Int _ -> `Int
  | Rat _ -> `Rat
  | _ -> `Other

let mk_int s = Int s
let of_int i = Int (Z.of_int i)
let int_of_string s = Int (Z.of_string s)

let mk_rat s = Rat s
let of_rat i j = Rat (Q.of_ints i j)
let rat_of_string s = Rat (Q.of_string s)

let true_ = True
let false_ = False
let wildcard = Wildcard
let and_ = And
let or_ = Or
let imply = Imply
let equiv = Equiv
let xor = Xor
let not_ = Not
let eq = Eq
let neq = Neq
let arrow = Arrow
let has_type = HasType
let tType = TType
let multiset = Multiset
let prop = Prop
let term = Term
let ty_int = TyInt
let ty_rat = TyRat
let grounding = Grounding

module Tag = struct
  type t =
    | T_lia (** integer arith *)
    | T_lra (** rational arith *)
    | T_ho (** higher order *)
    | T_ext (** extensionality *)
    | T_ind (** induction *)
    | T_data (** datatypes *)
    | T_distinct (** distinct constants *)
    | T_ac of ID.t (** AC symbols *)

  let compare = Pervasives.compare

  let pp out = function
    | T_lia -> Fmt.string out "lia"
    | T_lra -> Fmt.string out "lra"
    | T_ho -> Fmt.string out "ho"
    | T_ext -> Fmt.string out "extensionality"
    | T_ind -> Fmt.string out "ind"
    | T_data -> Fmt.string out "data"
    | T_distinct -> Fmt.string out "distinct_constants"
    | T_ac id -> Fmt.fprintf out "(ac %a)" ID.pp_full id
end


module Arith = struct
  let floor = Floor
  let ceiling = Ceiling
  let truncate = Truncate
  let round = Round
  let prec = Prec
  let succ = Succ
  let sum = Sum
  let difference = Difference
  let uminus = Uminus
  let product = Product
  let quotient = Quotient
  let quotient_e = Quotient_e
  let quotient_t = Quotient_t
  let quotient_f = Quotient_f
  let remainder_e = Remainder_e
  let remainder_t = Remainder_t
  let remainder_f = Remainder_f
  let is_int = Is_int
  let is_rat = Is_rat
  let to_int = To_int
  let to_rat = To_rat
  let less = Less
  let lesseq = Lesseq
  let greater = Greater
  let greatereq = Greatereq
end

module TPTP = struct
  let to_string = function
    | Eq -> "="
    | Neq -> "!="
    | And -> "&"
    | Or -> "|"
    | Not -> "~"
    | Imply -> "=>"
    | Equiv -> "<=>"
    | Xor -> "<~>"
    | HasType -> ":"
    | True -> "$true"
    | False -> "$false"
    | Arrow -> ">"
    | Wildcard -> "$_"
    | TType -> "$tType"
    | Term -> "$i"
    | Prop -> "$o"
    | Multiset -> failwith "cannot print this symbol in TPTP"
    | ForallConst -> "!!"
    | ExistsConst -> "??"
    | Grounding -> "$$ground"
    | TyInt -> "$int"
    | TyRat -> "$rat"
    | TyReal -> "$real"
    | Int x -> Z.to_string x
    | Rat x -> Q.to_string x
    | Real r -> r
    | Floor -> "$floor"
    | Ceiling -> "$ceiling"
    | Truncate -> "$truncate"
    | Round -> "$round"
    | Prec -> "$prec"
    | Succ -> "$succ"
    | Sum -> "$sum"
    | Difference -> "$diff"
    | Uminus -> "$uminus"
    | Product -> "$product"
    | Quotient -> "$quotient"
    | Quotient_e -> "$quotient_e"
    | Quotient_t -> "$quotient_t"
    | Quotient_f -> "$quotient_f"
    | Remainder_e -> "$remainder_e"
    | Remainder_t -> "$remainder_t"
    | Remainder_f -> "$remainder_f"
    | Is_int -> "$is_int"
    | Is_rat -> "$is_rat"
    | To_int -> "$to_int"
    | To_rat -> "$to_rat"
    | Less -> "$less"
    | Lesseq -> "$lesseq"
    | Greater -> "$greater"
    | Greatereq -> "$greatereq"
    | Box_opaque -> "$$box"
    | Pseudo_de_bruijn i -> Printf.sprintf "$$db_%d" i

  let pp out b = CCFormat.string out (to_string b)

  exception NotABuiltin

  let of_string_exn = function
    | "$true" -> True
    | "$false" -> False
    | "$_" -> Wildcard
    | "$tType" -> TType
    | "$i" -> Term
    | "$o" -> Prop
    | "!!" -> ForallConst
    | "??" -> ExistsConst
    | "$int" -> TyInt
    | "$rat" -> TyRat
    | "$floor" -> Floor
    | "$ceiling" -> Ceiling
    | "$truncate" -> Truncate
    | "$round" -> Round
    | "$prec" -> Prec
    | "$succ" -> Succ
    | "$sum" -> Sum
    | "$difference" -> Difference
    | "$uminus" -> Uminus
    | "$product" -> Product
    | "$quotient" -> Quotient
    | "$quotient_e" -> Quotient_e
    | "$quotient_t" -> Quotient_t
    | "$quotient_f" -> Quotient_f
    | "$remainder_e" -> Remainder_e
    | "$remainder_t" -> Remainder_t
    | "$remainder_f" -> Remainder_f
    | "$is_int" -> Is_int
    | "$is_rat" -> Is_rat
    | "$to_int" -> To_int
    | "$to_rat" -> To_rat
    | "$less" -> Less
    | "$lesseq" -> Lesseq
    | "$greater" -> Greater
    | "$greatereq" -> Greatereq
    | _ -> raise NotABuiltin

  let fixity = function
    | And | Or ->
      Infix_nary
    | Imply | Equiv | Xor | Eq | Neq | HasType ->
      Infix_binary
    | _ -> Prefix

  let is_prefix o = fixity o = Prefix
  let is_infix o = match fixity o with Infix_nary | Infix_binary -> true | Prefix -> false

  let of_string b =
    try Some (of_string_exn b)
    with NotABuiltin -> None

  (* TODO add the other ones *)
  let connectives = Set.of_seq
      (Iter.of_list [ and_; or_; equiv; imply; ])

  let is_connective = function
    | Int _
    | Rat _ -> false
    | _ -> true
end

module ArithOp = struct
  exception TypeMismatch of string
  (** This exception is raised when Arith functions are called
      on non-numeric values (Cst). *)

  (* helper to raise errors *)
  let _ty_mismatch fmt =
    CCFormat.ksprintf ~f:(fun msg -> raise (TypeMismatch msg)) fmt

  let sign = function
    | Int n -> Z.sign n
    | Rat n -> Q.sign n
    | s -> _ty_mismatch "cannot compute sign of symbol %a" pp s

  type arith_view =
    [ `Int of Z.t
    | `Rat of Q.t
    | `Other of t
    ]

  let view = function
    | Int i -> `Int i
    | Rat n -> `Rat n
    | s -> `Other s

  let parse_num s =
    if String.contains s '/'
    then mk_rat (Q.of_string s)
    else mk_int (Z.of_string s)

  let one_i = mk_int Z.one
  let zero_i = mk_int Z.zero
  let one_rat = mk_rat Q.one
  let zero_rat = mk_rat Q.zero

  let zero_of_ty = function
    | `Rat -> zero_rat
    | `Int -> zero_i

  let one_of_ty = function
    | `Rat -> one_rat
    | `Int -> one_i

  let is_zero = function
    | Int n -> Z.sign n = 0
    | Rat n -> Q.sign n = 0
    | s -> _ty_mismatch "not a number: %a" pp s

  let is_one = function
    | Int n -> Z.equal n Z.one
    | Rat n -> Q.equal n Q.one
    | s -> _ty_mismatch "not a number: %a" pp s

  let is_minus_one = function
    | Int n -> Z.equal n Z.minus_one
    | Rat n -> Q.equal n Q.minus_one
    | s -> _ty_mismatch "not a number: %a" pp s

  let floor s = match s with
    | Int _ -> s
    | Rat n -> mk_int (Q.to_bigint n)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let ceiling s = match s with
    | Int _ -> s
    | Rat _ -> failwith "Q.ceiling: not implemented" (* TODO *)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let truncate s = match s with
    | Int _ -> s
    | Rat n when Q.sign n >= 0 -> mk_int (Q.to_bigint n)
    | Rat _ -> failwith "Q.truncate: not implemented" (* TODO *)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let round s = match s with
    | Int _ -> s
    | Rat _ -> failwith "Q.round: not implemented" (* TODO *)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let prec s = match s with
    | Int n -> mk_int Z.(n - one)
    | Rat n -> mk_rat Q.(n - one)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let succ s = match s with
    | Int n -> mk_int Z.(n + one)
    | Rat n -> mk_rat Q.(n + one)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let err2_ s1 s2 = match s1, s2 with
    | Int _, Rat _
    | Rat _, Int _ -> _ty_mismatch "incompatible numeric types: %a and %a" pp s1 pp s2
    | _ -> _ty_mismatch "not numeric constants: %a, %a" pp s1 pp s2

  let sum s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int Z.(n1 + n2)
    | Rat n1, Rat n2 -> mk_rat Q.(n1 + n2)
    | _ -> err2_ s1 s2

  let difference s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int Z.(n1 - n2)
    | Rat n1, Rat n2 -> mk_rat Q.(n1 - n2)
    | _ -> err2_ s1 s2

  let uminus s = match s with
    | Int n -> mk_int (Z.neg n)
    | Rat n -> mk_rat (Q.neg n)
    | s -> _ty_mismatch "not a numeric constant: %a" pp s

  let product s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int Z.(n1 * n2)
    | Rat n1, Rat n2 -> mk_rat Q.(n1 * n2)
    | _ -> err2_ s1 s2

  let quotient s1 s2 = match s1, s2 with
    | Int n1, Int n2 ->
      let q, r = Z.div_rem n1 n2 in
      if Z.sign r = 0
      then mk_int q
      else _ty_mismatch "non-exact integral division: %a / %a" pp s1 pp s2
    | Rat n1, Rat n2 ->
      if Q.sign n2 = 0
      then raise Division_by_zero
      else mk_rat (Q.div n1 n2)
    | _ -> err2_ s1 s2

  let quotient_e s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.div n1 n2)
    | _ ->
      if sign s2 > 0
      then floor (quotient s1 s2)
      else ceiling (quotient s1 s2)

  let quotient_t s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.div n1 n2)
    | _ -> truncate (quotient s1 s2)

  let quotient_f s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.div n1 n2)
    | _ -> floor (quotient s1 s2)

  let remainder_e s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.rem n1 n2)
    | _ -> difference s1 (product (quotient_e s1 s2) s2)

  let remainder_t s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.rem n1 n2)
    | _ -> difference s1 (product (quotient_t s1 s2) s2)

  let remainder_f s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> mk_int (Z.rem n1 n2)
    | _ -> difference s1 (product (quotient_f s1 s2) s2)

  let to_int s = match s with
    | Int _ -> s
    | _ -> floor s

  let to_rat s = match s with
    | Int n -> mk_rat (Q.of_bigint n)
    | Rat _ -> s
    | _ -> _ty_mismatch "not a numeric constant: %a" pp s

  let abs s = match s with
    | Int n -> mk_int (Z.abs n)
    | Rat n -> mk_rat (Q.abs n)
    | _ -> _ty_mismatch "not a numeric constant: %a" pp s

  let divides a b = match a, b with
    | Rat i, Rat _ -> Q.sign i <> 0
    | Int a, Int b ->
      Z.sign a <> 0 &&
      Z.sign (Z.rem b a) = 0
    | _ -> _ty_mismatch "divides: expected two numerical types"

  let gcd a b = match a, b with
    | Rat _, Rat _ -> one_rat
    | Int a, Int b -> mk_int (Z.gcd a b)
    | _ -> _ty_mismatch "gcd: expected two numerical types"

  let lcm a b = match a, b with
    | Rat _, Rat _ -> one_rat
    | Int a, Int b -> mk_int (Z.lcm a b)
    | _ -> _ty_mismatch "gcd: expected two numerical types"

  let less s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> Z.lt n1 n2
    | Rat n1, Rat n2 -> Q.lt n1 n2
    | _ -> err2_ s1 s2

  let lesseq s1 s2 = match s1, s2 with
    | Int n1, Int n2 -> Z.leq n1 n2
    | Rat n1, Rat n2 -> Q.leq n1 n2
    | _ -> err2_ s1 s2

  let greater s1 s2 = less s2 s1

  let greatereq s1 s2 = lesseq s2 s1

  (* factorize [n] into a product of prime numbers. [n] must be positive *)
  let divisors n =
    if (Z.leq n Z.zero)
    then raise (Invalid_argument "prime_factors: expected number > 0")
    else try
        let n = Z.to_int n in
        let l = ref [] in
        for i = 2 to n/2 do
          if i < n && n mod i = 0 then l := i :: !l
        done;
        List.rev_map Z.of_int !l
      with Z.Overflow -> []  (* too big *)
end

module ZF = struct
  let to_string = function
    | Eq -> "="
    | Neq -> "!="
    | And -> "&&"
    | Or -> "||"
    | Not -> "~"
    | Imply -> "=>"
    | Equiv -> "<=>"
    | HasType -> ":"
    | True -> "true"
    | False -> "false"
    | Arrow -> ">"
    | Wildcard -> "_"
    | TType -> "type"
    | Prop -> "prop"
    | Term -> "term" (* XXX needs to be declared! *)
    | Xor
    | Multiset -> failwith "cannot print this symbol in ZF"
    | ForallConst -> "!!"
    | ExistsConst -> "??"
    | Grounding -> "$$grounding"
    | TyInt -> "int"
    | TyRat -> "rat"
    | TyReal -> "real"
    | Int x -> Z.to_string x
    | Rat x -> Q.to_string x
    | Real x -> x
    (* FIXME: update *)
    | Floor -> "$floor"
    | Ceiling -> "$ceiling"
    | Truncate -> "$truncate"
    | Round -> "$round"
    | Prec -> "$prec"
    | Succ -> "$succ"
    | Sum -> "+"
    | Difference -> "-"
    | Uminus -> "-"
    | Product -> "*"
    | Quotient -> "$quotient"
    | Quotient_e -> "/"
    | Quotient_t -> "$quotient_t"
    | Quotient_f -> "$quotient_f"
    | Remainder_e -> "mod"
    | Remainder_t -> "$remainder_t"
    | Remainder_f -> "$remainder_f"
    | Is_int -> "$is_int"
    | Is_rat -> "$is_rat"
    | To_int -> "$to_int"
    | To_rat -> "$to_rat"
    | Less -> "<"
    | Lesseq -> "<="
    | Greater -> ">"
    | Greatereq -> ">="
    | Box_opaque -> "<box>"
    | Pseudo_de_bruijn i -> Printf.sprintf "<db %d>" i

  let pp out b = CCFormat.string out (to_string b)
end
OCaml

Innovation. Community. Security.