package libsail
Sail is a language for describing the instruction semantics of processors
Install
dune-project
Dependency
Authors
Maintainers
Sources
sail-0.19.1.tbz
sha256=5e99698b6367c018133c90aaed2ceff173de20db6e61c33e2b19594a1d482a32
sha512=4de32379ae0a35a1e8ccb9ddd42147e5af88f595e18bde4c5ed635ccf511fffdcc203910732b818069e2c65e399223b79147a600f37aeb9df0f7779ba9ef323a
doc/src/libsail/smt_gen.ml.html
Source file smt_gen.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
(****************************************************************************) (* Sail *) (* *) (* Sail and the Sail architecture models here, comprising all files and *) (* directories except the ASL-derived Sail code in the aarch64 directory, *) (* are subject to the BSD two-clause licence below. *) (* *) (* The ASL derived parts of the ARMv8.3 specification in *) (* aarch64/no_vector and aarch64/full are copyright ARM Ltd. *) (* *) (* Copyright (c) 2013-2023 *) (* Kathyrn Gray *) (* Shaked Flur *) (* Stephen Kell *) (* Gabriel Kerneis *) (* Robert Norton-Wright *) (* Christopher Pulte *) (* Peter Sewell *) (* Alasdair Armstrong *) (* Brian Campbell *) (* Thomas Bauereiss *) (* Anthony Fox *) (* Jon French *) (* Dominic Mulligan *) (* Stephen Kell *) (* Mark Wassell *) (* Alastair Reid (Arm Ltd) *) (* *) (* All rights reserved. *) (* *) (* This work was partially supported by EPSRC grant EP/K008528/1 <a *) (* href="http://www.cl.cam.ac.uk/users/pes20/rems">REMS: Rigorous *) (* Engineering for Mainstream Systems</a>, an ARM iCASE award, EPSRC IAA *) (* KTF funding, and donations from Arm. This project has received *) (* funding from the European Research Council (ERC) under the European *) (* Union’s Horizon 2020 research and innovation programme (grant *) (* agreement No 789108, ELVER). *) (* *) (* This software was developed by SRI International and the University of *) (* Cambridge Computer Laboratory (Department of Computer Science and *) (* Technology) under DARPA/AFRL contracts FA8650-18-C-7809 ("CIFV") *) (* and FA8750-10-C-0237 ("CTSRD"). *) (* *) (* SPDX-License-Identifier: BSD-2-Clause *) (****************************************************************************) open Ast_util open Jib open Jib_util open Smt_exp (* Generate SMT definitions in a writer monad that keeps tracks of any overflow checks needed. *) type checks = { overflows : smt_exp list; strings_used : bool; reals_used : bool } let get_overflows c = c.overflows let empty_checks = { overflows = []; strings_used = false; reals_used = false } let append_checks c1 c2 = { overflows = c1.overflows @ c2.overflows; strings_used = c1.strings_used || c2.strings_used; reals_used = c1.reals_used || c2.reals_used; } type 'a check_writer_state = { value : 'a; checks : checks } type 'a check_writer = Parse_ast.l -> Jib_compile.ctx -> 'a check_writer_state let return x _ _ = { value = x; checks = empty_checks } let current_location l _ = { value = l; checks = empty_checks } let get_context _ ctx = { value = ctx; checks = empty_checks } let bind m f l ctx = let state = m l ctx in let state' = f state.value l ctx in { value = state'.value; checks = append_checks state.checks state'.checks } let fmap f m l ctx = let state = m l ctx in let value = f state.value in { value; checks = state.checks } let ( let* ) = bind let ( let+ ) m f = fmap f m let rec mapM f = function | [] -> return [] | x :: xs -> let* x = f x in let* xs = mapM f xs in return (x :: xs) let rec sequence = function | [] -> return [] | x :: xs -> let* x = x in let* xs = sequence xs in return (x :: xs) let rec iterM f = function | [] -> return () | x :: xs -> let* _ = f x in iterM f xs let run m l ctx = let state = m l ctx in (state.value, state.checks) let mk_check_writer f l ctx = let value, checks = f l ctx in { value; checks } let overflow_check check _ _ = { value = (); checks = { empty_checks with overflows = [check] } } let string_used _ _ = { value = (); checks = { empty_checks with strings_used = true } } let real_used _ _ = { value = (); checks = { empty_checks with reals_used = true } } (* [signed_size n m exp] takes a smt expression assumed to be a integer (signed bitvector) of length m and forces it to be length n by either sign extending it or truncating it as required *) let signed_size ?(checked = true) ~into:n ~from:m smt = if n = m then return smt else if n > m then return (SignExtend (n, n - m, smt)) else ( let check = (* If the top bit of the truncated number is one *) Ite ( Fn ("=", [Extract (n - 1, n - 1, m, smt); Bitvec_lit [Sail2_values.B1]]), (* Then we have an overflow, unless all bits we truncated were also one *) Fn ("not", [Fn ("=", [Extract (m - 1, n, m, smt); bvones (m - n)])]), (* Otherwise, all the top bits must be zero *) Fn ("not", [Fn ("=", [Extract (m - 1, n, m, smt); bvzero (m - n)])]) ) in let* _ = if checked then overflow_check check else return () in return (Extract (n - 1, 0, m, smt)) ) (* [unsigned_size n m exp] is much like signed_size, but it assumes that the bitvector is unsigned, so it either zero extends or truncates as required. *) let unsigned_size ?max_value ?(checked = true) ~into:n ~from:m smt = if n = m then return smt else if n > m then return (Fn ("concat", [bvzero (n - m); smt])) else (* Ensure we don't overwrite any high bits when truncating *) let* _ = if checked then overflow_check (Fn ("not", [Fn ("=", [Extract (m - 1, n, m, smt); bvzero (m - n)])])) else return () in return (Extract (n - 1, 0, m, smt)) (* We often need to create a SMT bitvector of a length sz with integer value x. [bvpint sz x] does this for positive integers, and [bvint sz x] does this for all integers. It's quite awkward because we don't have a very good way to get the binary representation of either an OCaml integer or a big integer. *) let bvpint ?(loc = Parse_ast.Unknown) sz x = let open Sail2_values in if Big_int.less_equal Big_int.zero x && Big_int.less_equal x (Big_int.of_int max_int) then ( let x = Big_int.to_int x in match Printf.sprintf "%X" x |> Util.string_to_list |> List.map nibble_of_char |> Util.option_all with | Some nibbles -> let bin = List.map (fun (a, b, c, d) -> [a; b; c; d]) nibbles |> List.concat in let _, bin = Util.take_drop (function B0 -> true | _ -> false) bin in let padding_amount = sz - List.length bin in if padding_amount >= 0 then ( let padding = List.init padding_amount (fun _ -> B0) in Bitvec_lit (padding @ bin) ) else ( (* Negative padding can happen if sz is not a multiple of 4 *) let extra_zeros, bin = Util.split_after padding_amount bin in assert (List.for_all (function B0 -> true | _ -> false) extra_zeros); Bitvec_lit bin ) | None -> assert false ) else if Big_int.greater x (Big_int.of_int max_int) then ( let y = ref x in let bin = ref [] in while not (Big_int.equal !y Big_int.zero) do let q, m = Big_int.quomod !y (Big_int.of_int 2) in bin := (if Big_int.equal m Big_int.zero then B0 else B1) :: !bin; y := q done; let padding_size = sz - List.length !bin in if padding_size < 0 then raise (Reporting.err_general loc (Printf.sprintf "Could not create a %d-bit integer with value %s.\nTry increasing the maximum integer size." sz (Big_int.to_string x) ) ); let padding = List.init padding_size (fun _ -> B0) in Bitvec_lit (padding @ !bin) ) else Reporting.unreachable loc __POS__ "bvpint called on non-positive integer" let bvint sz x = if Big_int.less x Big_int.zero then Fn ("bvadd", [Fn ("bvnot", [bvpint sz (Big_int.abs x)]); bvpint sz (Big_int.of_int 1)]) else bvpint sz x (* [required_width n] is the required number of bits to losslessly represent an integer n *) let required_width n = let rec required_width' n = if Big_int.equal n Big_int.zero then 1 else 1 + required_width' (Big_int.shift_right n 1) in required_width' (Big_int.abs n) module type CONFIG = sig val max_unknown_integer_width : int val max_unknown_bitvector_width : int val max_unknown_generic_vector_length : int val union_ctyp_classify : Jib_compile.ctx -> ctyp -> bool val register_ref : string -> smt_exp end module type PRIMOP_GEN = sig val print_bits : Parse_ast.l -> ctyp -> string val string_of_bits : Parse_ast.l -> ctyp -> string val dec_str : Parse_ast.l -> ctyp -> string val hex_str : Parse_ast.l -> ctyp -> string val hex_str_upper : Parse_ast.l -> ctyp -> string val count_leading_zeros : Parse_ast.l -> int -> string val count_trailing_zeros : Parse_ast.l -> int -> string val fvector_store : Parse_ast.l -> int -> ctyp -> string val is_empty : Parse_ast.l -> ctyp -> string val hd : Parse_ast.l -> ctyp -> string val tl : Parse_ast.l -> ctyp -> string val eq_list : Parse_ast.l -> (cval -> cval -> smt_exp check_writer) -> ctyp -> ctyp -> string check_writer end let builtin_type_error fn cvals ret_ctyp_opt = let* l = current_location in let args = Util.string_of_list ", " (fun cval -> string_of_ctyp (cval_ctyp cval)) cvals in match ret_ctyp_opt with | Some ret_ctyp -> let message = Printf.sprintf "%s : (%s) -> %s" fn args (string_of_ctyp ret_ctyp) in raise (Reporting.err_todo l message) | None -> raise (Reporting.err_todo l (Printf.sprintf "%s : (%s)" fn args)) type undefined_mode = Undefined_zeros | Undefined_bits | Undefined_disable module Make (Config : CONFIG) (Primop_gen : PRIMOP_GEN) = struct let lint_size = Config.max_unknown_integer_width let lbits_size = Config.max_unknown_bitvector_width let lbits_index = required_width (Big_int.of_int lbits_size) let int_size = function | CT_constant n -> required_width n | CT_fint sz -> sz | CT_lint -> lint_size | _ -> Reporting.unreachable Parse_ast.Unknown __POS__ "Argument to int_size must be an integer type" let bv_size = function | CT_fbits sz | CT_sbits sz -> sz | CT_lbits -> lbits_size | _ -> Reporting.unreachable Parse_ast.Unknown __POS__ "Argument to bv_size must be a bitvector type" let generic_vector_length = function | CT_fvector (n, _) -> n | CT_vector _ -> Config.max_unknown_generic_vector_length | _ -> Reporting.unreachable Parse_ast.Unknown __POS__ "Argument to generic_vector_length must be a generic vector type" let to_fbits ctyp bv = match ctyp with | CT_fbits n -> (n, bv) | CT_lbits -> (lbits_size, Fn ("contents", [bv])) | _ -> Reporting.unreachable Parse_ast.Unknown __POS__ (Printf.sprintf "Type %s must be a bitvector in to_fbits" (string_of_ctyp ctyp)) let literal vl ctyp = let open Value2 in match (vl, ctyp) with | VL_bits bv, CT_fbits n -> unsigned_size ~into:n ~from:(List.length bv) (Bitvec_lit bv) | VL_bool b, _ -> return (Bool_lit b) | VL_int n, CT_constant m -> return (bvint (required_width n) n) | VL_int n, CT_fint sz -> return (bvint sz n) | VL_int n, CT_lint -> return (bvint Config.max_unknown_integer_width n) | VL_bit b, CT_bit -> return (Bitvec_lit [b]) | VL_unit, _ -> return Unit | VL_string str, _ -> let* _ = string_used in return (String_lit str) | VL_real str, _ -> let* _ = real_used in return (if str.[0] = '-' then Fn ("-", [Real_lit (String.sub str 1 (String.length str - 1))]) else Real_lit str) | VL_ref str, _ -> return (Config.register_ref str) | _ -> let* l = current_location in Reporting.unreachable l __POS__ ("Cannot translate literal to SMT: " ^ string_of_value vl ^ " : " ^ string_of_ctyp ctyp) let smt_cval_call op args = match (op, args) with | Bnot, [arg] -> Fn ("not", [arg]) | Bor, [arg] -> arg | Bor, args -> smt_disj args | Band, [arg] -> arg | Band, args -> smt_conj args | Eq, args -> Fn ("=", args) | Neq, args -> Fn ("not", [Fn ("=", args)]) | Ilt, [lhs; rhs] -> Fn ("bvslt", [lhs; rhs]) | Ilteq, [lhs; rhs] -> Fn ("bvsle", [lhs; rhs]) | Igt, [lhs; rhs] -> Fn ("bvsgt", [lhs; rhs]) | Igteq, [lhs; rhs] -> Fn ("bvsge", [lhs; rhs]) | Iadd, args -> Fn ("bvadd", args) | Isub, args -> Fn ("bvsub", args) | Bvnot, args -> Fn ("bvnot", args) | Bvor, args -> Fn ("bvor", args) | Bvand, args -> Fn ("bvand", args) | Bvxor, args -> Fn ("bvxor", args) | Bvadd, args -> Fn ("bvadd", args) | Bvsub, args -> Fn ("bvsub", args) | Concat, args -> Fn ("concat", args) | Ite, [i; t; e] -> Ite (i, t, e) | Zero_extend _, _ -> failwith "ZE" | Sign_extend _, _ -> failwith "SE" | Slice _, _ -> failwith "slice" | Sslice _, _ -> failwith "sslice" | Set_slice, _ -> failwith "set_slice" | Replicate _, _ -> failwith "replicate" | List_hd, [arg] -> Fn ("hd", [arg]) | op, _ -> failwith (string_of_op op) let smt_conversion ~into:to_ctyp ~from:from_ctyp x = match (from_ctyp, to_ctyp) with | _, _ when ctyp_equal from_ctyp to_ctyp -> return x | _, CT_constant c -> return (bvint (required_width c) c) | CT_constant c, CT_fint sz -> return (bvint sz c) | CT_constant c, CT_lint -> return (bvint lint_size c) | CT_fint sz, CT_lint -> signed_size ~into:lint_size ~from:sz x | CT_lint, CT_fint sz -> signed_size ~into:sz ~from:lint_size x | CT_lint, CT_fbits n -> signed_size ~into:n ~from:lint_size x | CT_lint, CT_lbits -> let* x = signed_size ~into:lbits_size ~from:lint_size x in return (Fn ("Bits", [bvint lbits_index (Big_int.of_int lint_size); x])) | CT_fint n, CT_lbits -> let* x = signed_size ~into:lbits_size ~from:n x in return (Fn ("Bits", [bvint lbits_index (Big_int.of_int n); x])) | CT_fint n, CT_fint m -> signed_size ~into:m ~from:n x | CT_lbits, CT_fbits n -> unsigned_size ~into:n ~from:lbits_size (Fn ("contents", [x])) | CT_fbits n, CT_fbits m -> unsigned_size ~into:m ~from:n x | CT_fbits n, CT_lbits -> let* x = unsigned_size ~into:lbits_size ~from:n x in return (Fn ("Bits", [bvint lbits_index (Big_int.of_int n); x])) | CT_fvector _, CT_vector _ -> return x | CT_vector _, CT_fvector _ -> return x | _, _ -> let* l = current_location in Reporting.unreachable l __POS__ (Printf.sprintf "Cannot perform conversion from %s to %s" (string_of_ctyp from_ctyp) (string_of_ctyp to_ctyp)) let rec smt_cval cval = match cval_ctyp cval with | CT_constant n -> return (bvint (required_width n) n) | _ -> ( match cval with | V_lit (vl, ctyp) -> literal vl ctyp | V_id (id, _) -> return (Var id) | V_member (id, _) -> return (Member id) | V_call (List_hd, [arg]) -> let* l = current_location in let op = Primop_gen.hd l (cval_ctyp arg) in let* arg = smt_cval arg in return (Hd (op, arg)) | V_call (List_tl, [arg]) -> let* l = current_location in let op = Primop_gen.tl l (cval_ctyp arg) in let* arg = smt_cval arg in return (Tl (op, arg)) | V_call (List_is_empty, [arg]) -> let* l = current_location in let op = Primop_gen.is_empty l (cval_ctyp arg) in let* arg = smt_cval arg in return (Fn (op, [arg])) | V_call (Index i, [vec]) -> ( let* l = current_location in match cval_ctyp vec with | CT_fvector (len, _) -> let* vec = smt_cval vec in let* i = bind (smt_cval (V_lit (VL_int (Big_int.of_int i), CT_fint 64))) (unsigned_size ~checked:false ~into:(required_width (Big_int.of_int (len - 1)) - 1) ~from:64) in return (Fn ("select", [vec; i])) | _ -> Reporting.unreachable l __POS__ "Index for non-fixed-vector type found" ) | V_call (op, args) -> let* args = mapM smt_cval args in return (smt_cval_call op args) | V_ctor_kind (union, (ctor, _)) -> let* union = smt_cval union in return (Fn ("not", [Tester (ctor, union)])) | V_ctor_unwrap (union, (ctor, _), ctyp) -> let union_ctyp = cval_ctyp union in let* union = smt_cval union in let* ctx = get_context in return (Unwrap (ctor, Config.union_ctyp_classify ctx union_ctyp, union)) | V_field (record, field, _) -> ( match cval_ctyp record with | CT_struct (struct_id, _) -> let* record = smt_cval record in return (Field (struct_id, field, record)) | _ -> let* l = current_location in Reporting.unreachable l __POS__ "Field for non-struct type found" ) | V_struct (fields, ctyp) -> let* l = current_location in let* ctx = get_context in let struct_id, field_ctyp = Jib_compile.struct_fields l ctx ctyp in let* fields = mapM (fun (field_id, field) -> let* smt = smt_cval field in let* smt = smt_conversion ~into:(field_ctyp field_id) ~from:(cval_ctyp field) smt in return (field_id, smt) ) fields in return (Struct (struct_id, fields)) | V_tuple _ | V_tuple_member _ -> let* l = current_location in Reporting.unreachable l __POS__ "Found tuple value, which should have been removed before SMT generation" ) (* [bvzeint esz cval] (BitVector Zero Extend INTeger), takes a cval which must be an integer type (either CT_fint, or CT_lint), and produces a bitvector which is either zero extended or truncated to exactly esz bits. *) let bvzeint esz cval = let sz = int_size (cval_ctyp cval) in match cval with | V_lit (VL_int n, _) -> return (bvint esz n) | _ -> let* smt = smt_cval cval in return ( if esz = sz then smt else if esz > sz then Fn ("concat", [bvzero (esz - sz); smt]) else Extract (esz - 1, 0, sz, smt) ) let builtin_arith ?(fold = true) fn big_int_fn padding v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | _, _, CT_constant c -> return (bvint (required_width c) c) | CT_constant c1, CT_constant c2, _ when fold -> return (bvint (int_size ret_ctyp) (big_int_fn c1 c2)) | ctyp1, ctyp2, _ -> (* To detect arithmetic overflow we can expand the input bitvectors to some size determined by a padding function, then check we don't lose precision when going back after performing the operation. *) let ret_sz = int_size ret_ctyp in let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let* padded_smt1 = signed_size ~into:(padding ret_sz) ~from:(int_size ctyp1) smt1 in let* padded_smt2 = signed_size ~into:(padding ret_sz) ~from:(int_size ctyp2) smt2 in signed_size ~into:ret_sz ~from:(padding ret_sz) (Fn (fn, [padded_smt1; padded_smt2])) let builtin_ediv_int v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | _, _, CT_constant c -> return (bvint (required_width c) c) | ctyp1, ctyp2, _ -> let ret_sz = int_size ret_ctyp in let* smt1 = bind (smt_cval v1) (signed_size ~into:ret_sz ~from:(int_size ctyp1)) in let* smt2 = bind (smt_cval v2) (signed_size ~into:ret_sz ~from:(int_size ctyp2)) in let negative_dividend = bvslt smt1 (bvzero ret_sz) in let negative_divisor = bvslt smt2 (bvzero ret_sz) in return (Ite ( smt_conj [negative_dividend; negative_divisor], bvadd (bvsdiv (bvsub (bvneg smt1) (bvone ret_sz)) (bvneg smt2)) (bvone ret_sz), Ite (negative_dividend, bvsub (bvsdiv (bvadd smt1 (bvone ret_sz)) smt2) (bvone ret_sz), bvsdiv smt1 smt2) ) ) let builtin_emod_int v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | _, _, CT_constant c -> return (bvint (required_width c) c) | ctyp1, ctyp2, _ -> let ret_sz = int_size ret_ctyp in let* smt1 = bind (smt_cval v1) (signed_size ~into:ret_sz ~from:(int_size ctyp1)) in let* smt2 = bind (smt_cval v2) (signed_size ~into:ret_sz ~from:(int_size ctyp2)) in let negative_dividend = bvslt smt1 (bvzero ret_sz) in let negative_divisor = bvslt smt2 (bvzero ret_sz) in return (Ite ( smt_conj [negative_dividend; negative_divisor], bvadd (bvsrem (bvsub (bvneg smt1) (bvone ret_sz)) (bvneg smt2)) (bvone ret_sz), Ite (negative_dividend, bvsub (bvsrem (bvadd smt1 (bvone ret_sz)) smt2) (bvone ret_sz), bvsrem smt1 smt2) ) ) let builtin_add_int = builtin_arith "bvadd" Big_int.add (fun x -> x + 1) let builtin_sub_int = builtin_arith "bvsub" Big_int.sub (fun x -> x + 1) let builtin_mult_int = builtin_arith "bvmul" Big_int.mul (fun x -> x * 2) let builtin_neg_int v ret_ctyp = match (cval_ctyp v, ret_ctyp) with | _, CT_constant c -> return (bvint (required_width c) c) | CT_constant c, _ -> return (bvint (int_size ret_ctyp) (Big_int.negate c)) | ctyp, _ -> let open Sail2_values in let* smt = bind (smt_cval v) (signed_size ~into:(int_size ret_ctyp) ~from:(int_size ctyp)) in let* _ = overflow_check (Fn ("=", [smt; Bitvec_lit (B1 :: List.init (int_size ret_ctyp - 1) (fun _ -> B0))])) in return (Fn ("bvneg", [smt])) let builtin_abs_int v ret_ctyp = match (cval_ctyp v, ret_ctyp) with | _, CT_constant c -> return (bvint (required_width c) c) | CT_constant c, _ -> return (bvint (int_size ret_ctyp) (Big_int.abs c)) | ctyp, _ -> let sz = int_size ctyp in let* smt = smt_cval v in let* resized_pos = signed_size ~into:(int_size ret_ctyp) ~from:sz smt in let* resized_neg = signed_size ~into:(int_size ret_ctyp) ~from:sz (bvneg smt) in return (Ite (Fn ("=", [Extract (sz - 1, sz - 1, sz, smt); bvone 1]), resized_neg, resized_pos)) let builtin_choose_int compare op v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2) with | CT_constant n, CT_constant m -> return (bvint (int_size ret_ctyp) (op n m)) | ctyp1, ctyp2 -> let ret_sz = int_size ret_ctyp in let* smt1 = bind (smt_cval v1) (signed_size ~into:ret_sz ~from:(int_size ctyp1)) in let* smt2 = bind (smt_cval v2) (signed_size ~into:ret_sz ~from:(int_size ctyp2)) in return (Ite (Fn (compare, [smt1; smt2]), smt1, smt2)) let builtin_max_int = builtin_choose_int "bvsgt" max let builtin_min_int = builtin_choose_int "bvslt" min let builtin_tdiv_int = builtin_arith ~fold:false "bvsdiv" Sail2_values.tdiv_int (fun x -> x) let builtin_tmod_int = builtin_arith ~fold:false "bvsrem" Sail2_values.tmod_int (fun x -> x) let int_comparison fn big_int_fn v1 v2 = let* sv1 = smt_cval v1 in let* sv2 = smt_cval v2 in match (cval_ctyp v1, cval_ctyp v2) with | CT_constant c1, CT_constant c2 -> return (Bool_lit (big_int_fn c1 c2)) | CT_lint, CT_lint -> return (Fn (fn, [sv1; sv2])) | CT_fint sz1, CT_fint sz2 -> return ( if sz1 == sz2 then Fn (fn, [sv1; sv2]) else if sz1 > sz2 then Fn (fn, [sv1; SignExtend (sz1, sz1 - sz2, sv2)]) else Fn (fn, [SignExtend (sz2, sz2 - sz1, sv1); sv2]) ) | CT_constant c, CT_fint sz -> let constant_sz = required_width c in if constant_sz <= sz then return (Fn (fn, [bvint sz c; sv2])) else let* sv2 = signed_size ~checked:false ~into:constant_sz ~from:sz sv2 in return (Fn (fn, [bvint constant_sz c; sv2])) | CT_fint sz, CT_constant c -> let constant_sz = required_width c in if constant_sz <= sz then return (Fn (fn, [sv1; bvint sz c])) else let* sv1 = signed_size ~checked:false ~into:constant_sz ~from:sz sv1 in return (Fn (fn, [sv1; bvint constant_sz c])) | CT_constant c, CT_lint -> let constant_sz = required_width c in if constant_sz <= lint_size then return (Fn (fn, [bvint lint_size c; sv2])) else let* sv2 = signed_size ~checked:false ~into:constant_sz ~from:lint_size sv2 in return (Fn (fn, [bvint constant_sz c; sv2])) | CT_lint, CT_constant c -> let constant_sz = required_width c in if constant_sz <= lint_size then return (Fn (fn, [sv1; bvint lint_size c])) else let* sv1 = signed_size ~checked:false ~into:constant_sz ~from:lint_size sv1 in return (Fn (fn, [sv1; bvint constant_sz c])) | CT_fint sz, CT_lint when sz < lint_size -> return (Fn (fn, [SignExtend (lint_size, lint_size - sz, sv1); sv2])) | CT_lint, CT_fint sz when sz < lint_size -> return (Fn (fn, [sv1; SignExtend (lint_size, lint_size - sz, sv2)])) | _, _ -> builtin_type_error fn [v1; v2] None let builtin_eq_int = int_comparison "=" Big_int.equal let builtin_lt = int_comparison "bvslt" Big_int.less let builtin_lteq = int_comparison "bvsle" Big_int.less_equal let builtin_gt = int_comparison "bvsgt" Big_int.greater let builtin_gteq = int_comparison "bvsge" Big_int.greater_equal let builtin_signed v ret_ctyp = let* sv = smt_cval v in match (cval_ctyp v, ret_ctyp) with | CT_fbits n, CT_fint m when m >= n -> return (SignExtend (m, m - n, sv)) | CT_fbits n, CT_lint -> return (SignExtend (lint_size, lint_size - n, sv)) | CT_lbits, CT_lint -> let contents = Fn ("contents", [sv]) in let top_bit_shift = ZeroExtend (lbits_size, lbits_index, bvsub (Fn ("len", [sv])) (bvone lbits_index)) in let top_bit = Extract (0, 0, lbits_size, bvlshr contents top_bit_shift) in let is_signed = Fn ("=", [top_bit; bvone 1]) in let* zero_extended = unsigned_size ~into:lint_size ~from:lbits_size contents in let ones_mask = bvshl (bvones lint_size) (ZeroExtend (lint_size, lbits_index, Fn ("len", [sv]))) in let ones_extended = bvor ones_mask zero_extended in return (Ite (is_signed, ones_extended, zero_extended)) | _, _ -> builtin_type_error "signed" [v] (Some ret_ctyp) let builtin_unsigned v ret_ctyp = let* sv = smt_cval v in match (cval_ctyp v, ret_ctyp) with | CT_fbits n, CT_fint m when m > n -> return (Fn ("concat", [bvzero (m - n); sv])) | CT_fbits n, CT_lint -> return (Fn ("concat", [bvzero (lint_size - n); sv])) | CT_lbits, CT_lint -> signed_size ~into:lint_size ~from:lbits_size (Fn ("contents", [sv])) | CT_lbits, CT_fint m -> signed_size ~into:m ~from:lbits_size (Fn ("contents", [sv])) | _, _ -> builtin_type_error "unsigned" [v] (Some ret_ctyp) let bvmask len = let all_ones = bvones lbits_size in let shift = Fn ("concat", [bvzero (lbits_size - lbits_index); len]) in bvnot (bvshl all_ones shift) let wf_lbits bv = let mask = bvnot (bvmask (Fn ("len", [bv]))) in Fn ("=", [bvand mask (Fn ("contents", [bv])); bvzero lbits_size]) let builtin_shift shiftop vbits vshift ret_ctyp = match cval_ctyp vbits with | CT_fbits n -> let* bv = smt_cval vbits in let* shift = bvzeint n vshift in return (Fn (shiftop, [bv; shift])) | CT_lbits -> let* bv = smt_cval vbits in let* shift = bvzeint lbits_size vshift in let shifted = if shiftop = "bvashr" then ( let mask = bvmask (Fn ("len", [bv])) in bvand mask (Fn (shiftop, [bvor (bvnot mask) (Fn ("contents", [bv])); shift])) ) else Fn (shiftop, [Fn ("contents", [bv]); shift]) in return (Fn ("Bits", [Fn ("len", [bv]); shifted])) | _ -> builtin_type_error shiftop [vbits; vshift] (Some ret_ctyp) let builtin_shift_by_bits shiftop vbits vshift ret_ctyp = match cval_ctyp vbits with | CT_fbits n -> let* bv = smt_cval vbits in let* shift = bind (smt_cval vshift) (smt_conversion ~into:(CT_fbits n) ~from:(cval_ctyp vshift)) in return (Fn (shiftop, [bv; shift])) | CT_lbits -> let* bv = smt_cval vbits in let* shift = bind (smt_cval vshift) (smt_conversion ~into:(CT_fbits lbits_size) ~from:(cval_ctyp vshift)) in let shifted = Fn (shiftop, [Fn ("contents", [bv]); shift]) in return (Fn ("Bits", [Fn ("len", [bv]); shifted])) | _ -> builtin_type_error shiftop [vbits; vshift] (Some ret_ctyp) let builtin_slice v1 v2 v3 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, cval_ctyp v3, ret_ctyp) with | CT_lbits, CT_constant start, CT_constant len, CT_fbits _ -> let top = Big_int.pred (Big_int.add start len) in let* v1 = smt_cval v1 in return (Extract (Big_int.to_int top, Big_int.to_int start, lbits_size, Fn ("contents", [v1]))) | CT_fbits sz, CT_constant start, CT_constant len, CT_fbits _ -> let top = Big_int.pred (Big_int.add start len) in let* v1 = smt_cval v1 in return (Extract (Big_int.to_int top, Big_int.to_int start, sz, v1)) | CT_fbits sz, CT_fint _, CT_constant len, CT_fbits _ -> let* shifted = builtin_shift "bvlshr" v1 v2 (cval_ctyp v1) in return (Extract (Big_int.to_int (Big_int.pred len), 0, sz, shifted)) | ctyp1, ctyp2, _, CT_lbits -> let* smt1 = smt_cval v1 in let sz, smt1 = to_fbits ctyp1 smt1 in let* smt1 = unsigned_size ~into:lbits_size ~from:sz smt1 in let* smt2 = bind (smt_cval v2) (signed_size ~into:lbits_size ~from:(int_size ctyp2)) in let* smt3 = bvzeint lbits_index v3 in return (Fn ("Bits", [smt3; Fn ("bvand", [Fn ("bvlshr", [smt1; smt2]); bvmask smt3])])) | _ -> builtin_type_error "slice" [v1; v2; v3] (Some ret_ctyp) let builtin_slice_inc v1 v2 v3 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, cval_ctyp v3, ret_ctyp) with | CT_fbits width, CT_constant start, CT_constant len, CT_fbits _ -> let bot = width - Big_int.to_int (Big_int.add start len) in let* v1 = smt_cval v1 in return (Extract (width - 1 - Big_int.to_int start, bot, width, v1)) | _ -> builtin_type_error "slice_inc" [v1; v2; v3] (Some ret_ctyp) let builtin_zeros v ret_ctyp = let ctyp = cval_ctyp v in let sz = int_size ctyp in match (ctyp, ret_ctyp) with | _, CT_fbits n -> return (bvzero n) | CT_constant c, CT_lbits -> return (Fn ("Bits", [bvint lbits_index c; bvzero lbits_size])) | _, CT_lbits -> if sz >= lbits_index then let* v = smt_cval v in return (Fn ("Bits", [extract ~from:sz (lbits_index - 1) 0 v; bvzero lbits_size])) else let* v = smt_cval v in return (Fn ("Bits", [ZeroExtend (lbits_index, lbits_index - int_size ctyp, v); bvzero lbits_size])) | _ -> builtin_type_error "zeros" [v] (Some ret_ctyp) let builtin_ones cval = function | CT_fbits n -> return (bvones n) | CT_lbits -> let* v = smt_cval cval in let len = extract ~from:(int_size (cval_ctyp cval)) (lbits_index - 1) 0 v in return (Fn ("Bits", [len; Fn ("bvand", [bvmask len; bvones lbits_size])])) | ret_ctyp -> builtin_type_error "ones" [cval] (Some ret_ctyp) let builtin_zero_extend vbits vlen ret_ctyp = match (cval_ctyp vbits, cval_ctyp vlen, ret_ctyp) with | CT_fbits n, _, CT_fbits m when n = m -> smt_cval vbits | CT_fbits n, _, CT_fbits m -> let* bv = smt_cval vbits in return (Fn ("concat", [bvzero (m - n); bv])) | CT_lbits, _, CT_fbits m -> let* bv = smt_cval vbits in return (Extract (m - 1, 0, lbits_size, Fn ("contents", [bv]))) | CT_fbits n, _, CT_lbits -> let* bits = if lbits_size = n then smt_cval vbits else if lbits_size > n then let* unextended = smt_cval vbits in return (Fn ("concat", [bvzero (lbits_size - n); unextended])) else assert false in let* len = bvzeint lbits_index vlen in return (Fn ("Bits", [len; bits])) | CT_lbits, CT_lint, CT_lbits -> let* len = smt_cval vlen in let* bv = smt_cval vbits in return (Fn ("Bits", [extract ~from:lint_size (lbits_index - 1) 0 len; Fn ("contents", [bv])])) | _ -> builtin_type_error "zero_extend" [vbits; vlen] (Some ret_ctyp) let builtin_sign_extend vbits vlen ret_ctyp = let* bv = smt_cval vbits in match (cval_ctyp vbits, cval_ctyp vlen, ret_ctyp) with | CT_fbits n, _, CT_fbits m when n = m -> smt_cval vbits | CT_fbits n, _, CT_fbits m -> let top_bit_one = Fn ("=", [Extract (n - 1, n - 1, n, bv); bvone 1]) in return (Ite (top_bit_one, Fn ("concat", [bvones (m - n); bv]), Fn ("concat", [bvzero (m - n); bv]))) | CT_lbits, i_ctyp, CT_lbits -> let* len = smt_cval vlen in let contents = Fn ("contents", [bv]) in let top_bit_shift = ZeroExtend (lbits_size, lbits_index, bvsub (Fn ("len", [bv])) (bvone lbits_index)) in let top_bit = Extract (0, 0, lbits_size, bvlshr contents top_bit_shift) in let is_signed = Fn ("=", [top_bit; bvone 1]) in let* new_len = signed_size ~into:lbits_index ~from:(int_size i_ctyp) len in let zero_extended = Fn ("Bits", [new_len; contents]) in let ones_mask = bvshl (bvones lbits_size) (ZeroExtend (lbits_size, lbits_index, Fn ("len", [bv]))) in let unused_mask = bvnot (bvshl (bvones lbits_size) (ZeroExtend (lbits_size, lbits_index, new_len))) in let ones_extended = Fn ("Bits", [new_len; bvand unused_mask (bvor ones_mask contents)]) in return (Ite (is_signed, ones_extended, zero_extended)) | _ -> builtin_type_error "sign_extend" [vbits; vlen] (Some ret_ctyp) let builtin_replicate_bits vbits vtimes ret_ctyp = match (cval_ctyp vbits, cval_ctyp vtimes, ret_ctyp) with | CT_fbits n, _, CT_fbits m -> let* bits = smt_cval vbits in let times = m / n in return (Fn ("concat", List.init times (fun _ -> bits))) | CT_fbits n, vtimes_ctyp, CT_lbits -> let max_times = (lbits_size / n) + 1 in let* times = bind (smt_cval vtimes) (signed_size ~into:lbits_index ~from:(int_size vtimes_ctyp)) in let len = bvmul (bvpint lbits_index (Big_int.of_int n)) times in let* bits = smt_cval vbits in let contents = Extract (lbits_size - 1, 0, n * max_times, Fn ("concat", List.init max_times (fun _ -> bits))) in return (Fn ("Bits", [len; Fn ("bvand", [bvmask len; contents])])) | CT_lbits, vtimes_ctyp, CT_lbits -> let* bits = smt_cval vbits in let* times = bind (smt_cval vtimes) (signed_size ~into:lbits_index ~from:(int_size vtimes_ctyp)) in let new_len = bvmul (Fn ("len", [bits])) times in (* This is extremely inefficient, but we don't have a good alternative if we find ourselves in this case. *) let shifted = List.init (lbits_size - 1) (fun n -> let amount = bvmul (bvpint lbits_size (Big_int.of_int (n + 1))) (ZeroExtend (lbits_size, lbits_index, Fn ("len", [bits]))) in bvshl (Fn ("contents", [bits])) amount ) in let contents = List.fold_left bvor (Fn ("contents", [bits])) shifted in return (Fn ("Bits", [new_len; Fn ("bvand", [bvmask new_len; contents])])) | _ -> builtin_type_error "replicate_bits" [vbits; vtimes] (Some ret_ctyp) let builtin_not_bits v ret_ctyp = match (cval_ctyp v, ret_ctyp) with | CT_lbits, CT_fbits n -> let* bv = smt_cval v in return (bvnot (Extract (n - 1, 0, lbits_size, Fn ("contents", [bv])))) | CT_lbits, CT_lbits -> let* bv = smt_cval v in let len = Fn ("len", [bv]) in return (Fn ("Bits", [len; Fn ("bvand", [bvmask len; bvnot (Fn ("contents", [bv]))])])) | CT_fbits n, CT_fbits m when n = m -> let* bv = smt_cval v in return (bvnot bv) | _, _ -> builtin_type_error "not_bits" [v] (Some ret_ctyp) let builtin_length v ret_ctyp = match (cval_ctyp v, ret_ctyp) with | _, CT_constant len -> return (bvpint (int_size ret_ctyp) len) | CT_fbits n, _ -> return (bvpint (int_size ret_ctyp) (Big_int.of_int n)) | CT_lbits, _ -> let* bv = smt_cval v in unsigned_size ~into:(int_size ret_ctyp) ~from:lbits_index (Fn ("len", [bv])) | CT_fvector (len, _), _ -> return (bvpint (int_size ret_ctyp) (Big_int.of_int len)) | CT_vector _, _ -> let* v = smt_cval v in return (Fn ("vlen", [v])) | _ -> builtin_type_error "length" [v] (Some ret_ctyp) let builtin_arith_bits op v1 v2 ret_ctyp = let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | CT_fbits n, CT_fbits m, CT_fbits o -> (* The Sail type system should guarantee this *) assert (n = m && m = o); return (Fn (op, [smt1; smt2])) | CT_lbits, CT_lbits, CT_lbits -> return (Fn ("Bits", [Fn ("len", [smt1]); Fn (op, [Fn ("contents", [smt1]); Fn ("contents", [smt2])])])) | v1_ctyp, v2_ctyp, CT_lbits -> let* smt1 = signed_size ~into:lbits_size ~from:(bv_size v1_ctyp) smt1 in let* smt2 = signed_size ~into:lbits_size ~from:(bv_size v2_ctyp) smt2 in let* len = builtin_length v1 (CT_fint lbits_index) in return (Fn ("Bits", [len; Fn (op, [smt1; smt2])])) | _ -> builtin_type_error ("arith_bits " ^ op) [v1; v2] (Some ret_ctyp) let builtin_arith_bits_int op v1 v2 ret_ctyp = let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | CT_fbits n, CT_constant c, CT_fbits o -> assert (n = o); return (Fn (op, [smt1; bvint o c])) | CT_fbits n, CT_fint m, CT_fbits o -> assert (n = o); let* smt2 = signed_size ~into:o ~from:m smt2 in return (Fn (op, [smt1; smt2])) | CT_fbits n, CT_lint, CT_fbits o -> assert (n = o); let* smt2 = signed_size ~into:o ~from:lint_size smt2 in return (Fn (op, [smt1; smt2])) | CT_lbits, v2_ctyp, CT_lbits -> let* smt2 = signed_size ~into:lbits_size ~from:(int_size v2_ctyp) smt2 in return (Fn ("Bits", [Fn ("len", [smt1]); Fn (op, [Fn ("contents", [smt1]); smt2])])) | _ -> builtin_type_error ("arith_bits_int " ^ op) [v1; v2] (Some ret_ctyp) let builtin_eq_bits v1 v2 = match (cval_ctyp v1, cval_ctyp v2) with | CT_fbits n, CT_fbits m -> let o = max n m in let* smt1 = bind (smt_cval v1) (unsigned_size ~into:o ~from:n) in let* smt2 = bind (smt_cval v2) (unsigned_size ~into:o ~from:n) in return (Fn ("=", [smt1; smt2])) | CT_lbits, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let len1 = Fn ("len", [smt1]) in let contents1 = Fn ("contents", [smt1]) in let len2 = Fn ("len", [smt2]) in let contents2 = Fn ("contents", [smt2]) in return (Fn ( "and", [ Fn ("=", [len1; len2]); Fn ("=", [Fn ("bvand", [bvmask len1; contents1]); Fn ("bvand", [bvmask len2; contents2])]); ] ) ) | CT_lbits, CT_fbits n -> let* smt1 = bind (smt_cval v1) (fun bv -> unsigned_size ~into:n ~from:lbits_size (Fn ("contents", [bv]))) in let* smt2 = smt_cval v2 in return (Fn ("=", [smt1; smt2])) | CT_fbits n, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = bind (smt_cval v2) (fun bv -> unsigned_size ~into:n ~from:lbits_size (Fn ("contents", [bv]))) in return (Fn ("=", [smt1; smt2])) | _ -> builtin_type_error "eq_bits" [v1; v2] None let builtin_neq_bits v1 v2 = let* t = builtin_eq_bits v1 v2 in return (Fn ("not", [t])) let builtin_append v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | CT_fbits n, CT_fbits m, CT_fbits o -> assert (n + m = o); if n = 0 then smt_cval v2 else if m = 0 then smt_cval v1 else let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Fn ("concat", [smt1; smt2])) | CT_fbits n, CT_lbits, CT_lbits when n = 0 -> smt_cval v2 | CT_fbits n, CT_lbits, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let x = if lbits_size = n then smt1 else Fn ("concat", [bvzero (lbits_size - n); smt1]) in let shift = Fn ("concat", [bvzero (lbits_size - lbits_index); Fn ("len", [smt2])]) in return (Fn ( "Bits", [ bvadd (bvint lbits_index (Big_int.of_int n)) (Fn ("len", [smt2])); bvor (bvshl x shift) (Fn ("contents", [smt2])); ] ) ) | CT_lbits, CT_fbits n, CT_fbits m -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Extract (m - 1, 0, n + lbits_size, Fn ("concat", [Fn ("contents", [smt1]); smt2]))) | CT_fbits n, CT_lbits, CT_fbits m -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Extract (m - 1, 0, n + lbits_size, Fn ("concat", [smt1; Fn ("contents", [smt2])]))) | CT_lbits, CT_fbits n, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Fn ( "Bits", [ bvadd (bvint lbits_index (Big_int.of_int n)) (Fn ("len", [smt1])); Extract (lbits_size - 1, 0, n + lbits_size, Fn ("concat", [Fn ("contents", [smt1]); smt2])); ] ) ) | CT_fbits n, CT_fbits m, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let* appended = unsigned_size ~into:lbits_size ~from:(n + m) (Fn ("concat", [smt1; smt2])) in return (Fn ("Bits", [bvint lbits_index (Big_int.of_int (n + m)); appended])) | CT_lbits, CT_lbits, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let x = Fn ("contents", [smt1]) in let shift = Fn ("concat", [bvzero (lbits_size - lbits_index); Fn ("len", [smt2])]) in return (Fn ("Bits", [bvadd (Fn ("len", [smt1])) (Fn ("len", [smt2])); bvor (bvshl x shift) (Fn ("contents", [smt2]))]) ) | CT_lbits, CT_lbits, CT_fbits n -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in let x = Fn ("contents", [smt1]) in let shift = Fn ("concat", [bvzero (lbits_size - lbits_index); Fn ("len", [smt2])]) in unsigned_size ~into:n ~from:lbits_size (bvor (bvshl x shift) (Fn ("contents", [smt2]))) | _ -> builtin_type_error "append" [v1; v2] (Some ret_ctyp) let builtin_sail_truncate v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | v1_ctyp, CT_constant c, CT_fbits m -> let* smt1 = smt_cval v1 in let sz, bv = to_fbits v1_ctyp smt1 in assert (Big_int.to_int c = m && m <= sz); return (Extract (Big_int.to_int c - 1, 0, sz, bv)) | v1_ctyp, _, CT_lbits -> let* smt1 = smt_cval v1 in let sz, bv = to_fbits v1_ctyp smt1 in let* smt1 = unsigned_size ~into:lbits_size ~from:sz bv in let* smt2 = bvzeint lbits_index v2 in return (Fn ("Bits", [smt2; Fn ("bvand", [bvmask smt2; smt1])])) | _ -> builtin_type_error "sail_truncate" [v1; v2] (Some ret_ctyp) let builtin_sail_truncateLSB v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | v1_ctyp, CT_constant c, CT_fbits m -> let* smt1 = smt_cval v1 in let sz, bv = to_fbits v1_ctyp smt1 in assert (Big_int.to_int c = m && m <= sz); return (Extract (sz - 1, sz - Big_int.to_int c, sz, bv)) | CT_fbits sz, _, CT_lbits -> let* smt1 = smt_cval v1 in let* len = bvzeint lbits_index v2 in let shift = bvsub (bvpint lbits_index (Big_int.of_int sz)) len in let shifted = bvlshr smt1 (ZeroExtend (sz, lbits_index, shift)) in let* shifted = unsigned_size ~checked:false ~into:lbits_size ~from:sz shifted in return (Fn ("Bits", [len; shifted])) | CT_lbits, _, CT_lbits -> let* smt1 = smt_cval v1 in let* len = bvzeint lbits_index v2 in let shift = bvsub (Fn ("len", [smt1])) len in let shifted = bvlshr (Fn ("contents", [smt1])) (ZeroExtend (lbits_size, lbits_index, shift)) in return (Fn ("Bits", [len; shifted])) | _ -> builtin_type_error "sail_truncateLSB" [v1; v2] (Some ret_ctyp) let builtin_bitwise fn v1 v2 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, ret_ctyp) with | CT_fbits n, CT_fbits m, CT_fbits o -> assert (n = m && m = o); let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Fn (fn, [smt1; smt2])) | CT_lbits, CT_lbits, CT_lbits -> let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Fn ("Bits", [Fn ("len", [smt1]); Fn (fn, [Fn ("contents", [smt1]); Fn ("contents", [smt2])])])) | _ -> builtin_type_error fn [v1; v2] (Some ret_ctyp) let fbits_mask mask_sz len = bvnot (bvshl (bvones mask_sz) len) let builtin_vector_access vec i ret_ctyp = match (cval_ctyp vec, cval_ctyp i, ret_ctyp) with | CT_fbits n, CT_constant i, CT_bit -> let* bv = smt_cval vec in return (Extract (Big_int.to_int i, Big_int.to_int i, n, bv)) | CT_lbits, CT_constant i, CT_bit -> let* bv = smt_cval vec in return (Extract (Big_int.to_int i, Big_int.to_int i, lbits_size, Fn ("contents", [bv]))) | ((CT_lbits | CT_fbits _) as bv_ctyp), i_ctyp, CT_bit -> let* bv = smt_cval vec in let sz, bv = to_fbits bv_ctyp bv in let* i = smt_cval i in (* checked:false should be fine here, as the Sail type system has already checked the bounds *) let* shift = signed_size ~checked:false ~into:sz ~from:(int_size i_ctyp) i in return (Extract (0, 0, sz, Fn ("bvlshr", [bv; shift]))) | CT_fvector (len, _), i_ctyp, _ -> let* vec = smt_cval vec in let* i = bind (smt_cval i) (unsigned_size ~checked:false ~into:(required_width (Big_int.of_int (len - 1)) - 1) ~from:(int_size i_ctyp)) in return (Fn ("select", [vec; i])) | CT_vector _, i_ctyp, _ -> let* vec = smt_cval vec in let* i = bind (smt_cval i) (unsigned_size ~checked:false ~into:32 ~from:(int_size i_ctyp)) in return (Fn ("vaccess", [vec; i])) (* | CT_vector _, CT_constant i, _ -> Fn ("select", [smt_cval ctx vec; bvint !vector_index i]) | CT_vector _, index_ctyp, _ -> Fn ("select", [smt_cval ctx vec; force_size ctx !vector_index (int_size ctx index_ctyp) (smt_cval ctx i)]) *) | _ -> builtin_type_error "vector_access" [vec; i] (Some ret_ctyp) let builtin_vector_access_inc vec i ret_ctyp = match (cval_ctyp vec, cval_ctyp i, ret_ctyp) with | CT_fbits n, CT_constant i, CT_bit -> let* bv = smt_cval vec in let top = n - 1 in return (Extract (top - Big_int.to_int i, top - Big_int.to_int i, n, bv)) | _ -> builtin_type_error "vector_access_inc" [vec; i] (Some ret_ctyp) let builtin_vector_subrange vec i j ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp j, ret_ctyp) with | CT_fbits n, CT_constant i, CT_constant j, CT_fbits _ -> let* vec = smt_cval vec in return (Extract (Big_int.to_int i, Big_int.to_int j, n, vec)) | CT_lbits, CT_constant i, CT_constant j, CT_fbits _ -> let* vec = smt_cval vec in return (Extract (Big_int.to_int i, Big_int.to_int j, lbits_size, Fn ("contents", [vec]))) (* | CT_fbits n, i_ctyp, CT_constant j, CT_lbits when Big_int.equal j Big_int.zero -> let i' = signed_size ~checked:false ctx ctx.lbits_index (int_size ctx i_ctyp) (smt_cval ctx i) in let len = bvadd i' (bvint ctx.lbits_index (Big_int.of_int 1)) in Fn ("Bits", [len; Fn ("bvand", [bvmask ctx len; unsigned_size ctx (lbits_size ctx) n (smt_cval ctx vec)])]) *) | bv_ctyp, i_ctyp, j_ctyp, ret_ctyp -> let* vec = smt_cval vec in let sz, vec = to_fbits bv_ctyp vec in let* i' = bind (smt_cval i) (signed_size ~into:sz ~from:(int_size i_ctyp)) in let* j' = bind (smt_cval j) (signed_size ~into:sz ~from:(int_size j_ctyp)) in let len = bvadd (bvadd i' (bvneg j')) (bvint sz (Big_int.of_int 1)) in let extracted = bvand (bvlshr vec j') (fbits_mask sz len) in smt_conversion ~into:ret_ctyp ~from:(CT_fbits sz) extracted let builtin_vector_subrange_inc vec i j ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp j, ret_ctyp) with | CT_fbits n, CT_constant i, CT_constant j, CT_fbits _ -> let top = n - 1 in let* vec = smt_cval vec in return (Extract (top - Big_int.to_int i, top - Big_int.to_int j, n, vec)) | _ -> builtin_type_error "vector_subrange_inc" [vec; i; j] (Some ret_ctyp) let builtin_vector_update vec i x ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp x, ret_ctyp) with | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int i > 0 -> assert (n = m); let* bv = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, Big_int.to_int i + 1, n, bv) in let bot = Extract (Big_int.to_int i - 1, 0, n, bv) in return (Fn ("concat", [top; Fn ("concat", [x; bot])])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 = Big_int.to_int i && Big_int.to_int i > 0 -> let* bv = smt_cval vec in let* x = smt_cval x in let bot = Extract (Big_int.to_int i - 1, 0, n, bv) in return (Fn ("concat", [x; bot])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int i = 0 -> let* bv = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, 1, n, bv) in return (Fn ("concat", [top; x])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 = 0 && Big_int.to_int i = 0 -> smt_cval x | CT_fbits n, i_ctyp, CT_bit, CT_fbits m -> assert (n = m); let* bv = smt_cval vec in let* bit = smt_cval x in (* Sail type system won't allow us to index out of range *) let* shift = bind (smt_cval i) (unsigned_size ~checked:false ~into:n ~from:(int_size i_ctyp)) in let mask = bvnot (bvshl (ZeroExtend (n, n - 1, bvone 1)) shift) in let shifted_bit = bvshl (ZeroExtend (n, n - 1, bit)) shift in return (bvor (bvand mask bv) shifted_bit) | CT_lbits, i_ctyp, CT_bit, CT_lbits -> let* bv = smt_cval vec in let* bit = smt_cval x in (* Sail type system won't allow us to index out of range *) let* shift = bind (smt_cval i) (unsigned_size ~checked:false ~into:lbits_size ~from:(int_size i_ctyp)) in let mask = bvnot (bvshl (ZeroExtend (lbits_size, lbits_size - 1, bvone 1)) shift) in let shifted_bit = bvshl (ZeroExtend (lbits_size, lbits_size - 1, bit)) shift in let contents = bvor (bvand mask (Fn ("contents", [bv]))) shifted_bit in return (Fn ("Bits", [Fn ("len", [bv]); contents])) | CT_fvector (len, ctyp), i_ctyp, _, CT_fvector (len_out, _) -> assert (len = len_out); let* l = current_location in let store_fn = Primop_gen.fvector_store l len ctyp in let* vec = smt_cval vec in let* x = bind (smt_cval x) (smt_conversion ~into:ctyp ~from:(cval_ctyp x)) in let* i = bind (smt_cval i) (unsigned_size ~checked:false ~into:(required_width (Big_int.of_int (len - 1)) - 1) ~from:(int_size i_ctyp)) in return (Store (Fixed (len, ctyp), store_fn, vec, i, x)) | CT_vector _, i_ctyp, _, CT_vector _ -> let* vec = smt_cval vec in let* i = bind (smt_cval i) (unsigned_size ~checked:false ~into:32 ~from:(int_size i_ctyp)) in let* x = smt_cval x in return (Fn ("vupdate", [vec; i; x])) | _ -> builtin_type_error "vector_update" [vec; i; x] (Some ret_ctyp) let builtin_vector_update_inc vec i x ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp x, ret_ctyp) with | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int i > 0 -> assert (n = m); let i = n - 1 - Big_int.to_int i in let* bv = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, i + 1, n, bv) in let bot = Extract (i - 1, 0, n, bv) in return (Fn ("concat", [top; Fn ("concat", [x; bot])])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 = Big_int.to_int i && Big_int.to_int i > 0 -> let* bv = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, 1, n, bv) in return (Fn ("concat", [top; x])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int i = 0 -> let i = n - 1 - Big_int.to_int i in let* bv = smt_cval vec in let* x = smt_cval x in let bot = Extract (i - 1, 0, n, bv) in return (Fn ("concat", [x; bot])) | CT_fbits n, CT_constant i, CT_bit, CT_fbits m when n - 1 = 0 && Big_int.to_int i = 0 -> smt_cval x | _ -> builtin_type_error "vector_update_inc" [vec; i; x] (Some ret_ctyp) let builtin_vector_update_subrange vec i j x ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp j, cval_ctyp x, ret_ctyp) with | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int j > 0 -> assert (n = m); let* vec = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, Big_int.to_int i + 1, n, vec) in let bot = Extract (Big_int.to_int j - 1, 0, n, vec) in return (Fn ("concat", [top; Fn ("concat", [x; bot])])) | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when n - 1 = Big_int.to_int i && Big_int.to_int j > 0 -> assert (n = m); let* vec = smt_cval vec in let* x = smt_cval x in let bot = Extract (Big_int.to_int j - 1, 0, n, vec) in return (Fn ("concat", [x; bot])) | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when n - 1 > Big_int.to_int i && Big_int.to_int j = 0 -> assert (n = m); let* vec = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, Big_int.to_int i + 1, n, vec) in return (Fn ("concat", [top; x])) | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when n - 1 = Big_int.to_int i && Big_int.to_int j = 0 -> smt_cval x | CT_fbits n, ctyp_i, ctyp_j, ctyp_x, CT_fbits m -> assert (n = m); let* vec = smt_cval vec in let* i' = bind (smt_cval i) (signed_size ~into:n ~from:(int_size ctyp_i)) in let* j' = bind (smt_cval j) (signed_size ~into:n ~from:(int_size ctyp_j)) in let* x' = bind (smt_cval x) (smt_conversion ~into:(CT_fbits n) ~from:ctyp_x) in let len = bvadd (bvadd i' (bvneg j')) (bvint n (Big_int.of_int 1)) in let mask = bvshl (fbits_mask n len) j' in return (bvor (bvand vec (bvnot mask)) (bvand (bvshl x' j') mask)) | bv_ctyp, ctyp_i, ctyp_j, ctyp_x, CT_lbits -> let* sz, bv = fmap (to_fbits bv_ctyp) (smt_cval vec) in let* i = bind (smt_cval i) (signed_size ~into:sz ~from:(int_size ctyp_i)) in let* j = bind (smt_cval j) (signed_size ~into:sz ~from:(int_size ctyp_j)) in let* x = bind (smt_cval x) (smt_conversion ~into:(CT_fbits sz) ~from:ctyp_x) in let len = bvadd (bvadd i (bvneg j)) (bvpint sz (Big_int.of_int 1)) in let mask = bvshl (fbits_mask sz len) j in let contents = bvor (bvand bv (bvnot mask)) (bvand (bvshl x j) mask) in let* index = signed_size ~into:lbits_index ~from:sz len in return (Fn ("Bits", [index; contents])) | _ -> builtin_type_error "vector_update_subrange" [vec; i; j; x] (Some ret_ctyp) let builtin_vector_update_subrange_inc vec i j x ret_ctyp = match (cval_ctyp vec, cval_ctyp i, cval_ctyp j, cval_ctyp x, ret_ctyp) with | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when 0 < Big_int.to_int i && Big_int.to_int j < n - 1 -> assert (n = m); let* vec = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, n - 1 - Big_int.to_int i, n, vec) in let bot = Extract (n - 1 - (Big_int.to_int j + 1), 0, n, vec) in return (Fn ("concat", [top; Fn ("concat", [x; bot])])) | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when Big_int.to_int i = 0 && Big_int.to_int j < n - 1 -> let* vec = smt_cval vec in let* x = smt_cval x in let bot = Extract (n - 1 - (Big_int.to_int j + 1), 0, n, vec) in return (Fn ("concat", [x; bot])) | CT_fbits n, CT_constant i, CT_constant j, CT_fbits sz, CT_fbits m when 0 < Big_int.to_int i && Big_int.to_int j = n - 1 -> assert (n = m); let* vec = smt_cval vec in let* x = smt_cval x in let top = Extract (n - 1, n - 1 - (Big_int.to_int i - 1), n, vec) in return (Fn ("concat", [top; x])) | _ -> builtin_type_error "vector_update_subrange_inc" [vec; i; j; x] (Some ret_ctyp) let builtin_get_slice_int v1 v2 v3 ret_ctyp = match (cval_ctyp v1, cval_ctyp v2, cval_ctyp v3, ret_ctyp) with | CT_constant len, ctyp, CT_constant start, CT_fbits ret_sz -> let len = Big_int.to_int len in let start = Big_int.to_int start in let in_sz = int_size ctyp in let* smt = if in_sz < len + start then bind (smt_cval v2) (signed_size ~into:(len + start) ~from:in_sz) else smt_cval v2 in return (Extract (start + len - 1, start, in_sz, smt)) | CT_lint, CT_lint, CT_constant start, CT_lbits when Big_int.equal start Big_int.zero -> let* v1 = smt_cval v1 in let len = Extract (lbits_index - 1, 0, lint_size, v1) in let* contents = bind (smt_cval v2) (unsigned_size ~into:lbits_size ~from:lint_size) in return (Fn ("Bits", [len; bvand (bvmask len) contents])) | ctyp1, ctyp2, ctyp3, ret_ctyp -> let* smt1 = smt_cval v1 in let* len = signed_size ~into:lbits_index ~from:(int_size ctyp1) smt1 in let* smt2 = bind (smt_cval v2) (signed_size ~into:lbits_size ~from:(int_size ctyp2)) in let* smt3 = bind (smt_cval v3) (signed_size ~into:lbits_size ~from:(int_size ctyp3)) in let result = Fn ("Bits", [len; bvand (bvmask len) (bvlshr smt2 smt3)]) in smt_conversion ~into:ret_ctyp ~from:CT_lbits result let builtin_pow2 v ret_ctyp = match (cval_ctyp v, ret_ctyp) with | CT_constant n, _ when Big_int.greater_equal n Big_int.zero -> return (bvint (int_size ret_ctyp) (Big_int.pow_int_positive 2 (Big_int.to_int n))) | ctyp, _ -> (* TODO: Check we haven't shifted too far *) let sz = int_size ctyp in let ret_sz = int_size ret_ctyp in let* shift = bind (smt_cval v) (signed_size ~into:ret_sz ~from:sz) in return (bvshl (bvone ret_sz) shift) let builtin_count_leading_zeros v ret_ctyp = let rec lzcnt ret_sz sz smt = if sz == 1 then Ite ( Fn ("=", [Extract (0, 0, sz, smt); Bitvec_lit [Sail2_values.B0]]), bvint ret_sz (Big_int.of_int 1), bvint ret_sz Big_int.zero ) else ( assert (sz land (sz - 1) = 0); let hsz = sz / 2 in Ite ( Fn ("=", [Extract (sz - 1, hsz, sz, smt); bvzero hsz]), Fn ("bvadd", [bvint ret_sz (Big_int.of_int hsz); lzcnt ret_sz hsz (Extract (hsz - 1, 0, sz, smt))]), lzcnt ret_sz hsz (Extract (sz - 1, hsz, sz, smt)) ) ) in let smallest_greater_power_of_two n = let m = ref 1 in while !m < n do m := !m lsl 1 done; assert (!m land (!m - 1) = 0); !m in let ret_sz = int_size ret_ctyp in let* smt = smt_cval v in match cval_ctyp v with | CT_fbits sz when sz land (sz - 1) = 0 -> return (lzcnt ret_sz sz smt) | CT_fbits sz -> let padded_sz = smallest_greater_power_of_two sz in let padding = bvzero (padded_sz - sz) in assert (padded_sz > sz); return (Fn ( "bvsub", [lzcnt ret_sz padded_sz (Fn ("concat", [padding; smt])); bvint ret_sz (Big_int.of_int (padded_sz - sz))] ) ) | CT_lbits -> if ret_sz > lbits_index then return (Fn ( "bvsub", [ lzcnt ret_sz lbits_size (Fn ("contents", [smt])); Fn ( "bvsub", [ bvint ret_sz (Big_int.of_int lbits_size); Fn ("concat", [bvzero (ret_sz - lbits_index); Fn ("len", [smt])]); ] ); ] ) ) else ( let leading_zeros = Fn ( "bvsub", [ lzcnt lbits_index lbits_size (Fn ("contents", [smt])); Fn ("bvsub", [bvint lbits_index (Big_int.of_int lbits_size); Fn ("len", [smt])]); ] ) in return (Extract (ret_sz - 1, 0, lbits_index, leading_zeros)) ) | _ -> builtin_type_error "count_leading_zeros" [v] (Some ret_ctyp) let builtin_count_trailing_zeros v ret_ctyp = let rec tzcnt ret_sz sz smt = if sz == 1 then Ite ( Fn ("=", [Extract (0, 0, sz, smt); Bitvec_lit [Sail2_values.B0]]), bvint ret_sz (Big_int.of_int 1), bvint ret_sz Big_int.zero ) else ( assert (sz land (sz - 1) = 0); let hsz = sz / 2 in Ite ( Fn ("=", [Extract (hsz - 1, 0, sz, smt); bvzero hsz]), Fn ("bvadd", [bvint ret_sz (Big_int.of_int hsz); tzcnt ret_sz hsz (Extract (sz - 1, hsz, sz, smt))]), tzcnt ret_sz hsz (Extract (hsz - 1, 0, sz, smt)) ) ) in let smallest_greater_power_of_two n = let m = ref 1 in while !m < n do m := !m lsl 1 done; assert (!m land (!m - 1) = 0); !m in let ret_sz = int_size ret_ctyp in let* smt = smt_cval v in match cval_ctyp v with | CT_fbits sz when sz land (sz - 1) = 0 -> return (tzcnt ret_sz sz smt) | CT_fbits sz -> let padded_sz = smallest_greater_power_of_two sz in let padding = bvzero (padded_sz - sz) in assert (padded_sz > sz); return (Fn ( "bvsub", [tzcnt ret_sz padded_sz (Fn ("concat", [padding; smt])); bvint ret_sz (Big_int.of_int (padded_sz - sz))] ) ) | CT_lbits -> if ret_sz > lbits_index then return (Fn ( "bvsub", [ tzcnt ret_sz lbits_size (Fn ("contents", [smt])); Fn ( "bvsub", [ bvint ret_sz (Big_int.of_int lbits_size); Fn ("concat", [bvzero (ret_sz - lbits_index); Fn ("len", [smt])]); ] ); ] ) ) else ( let trailing_zeros = Fn ( "bvsub", [ tzcnt lbits_index lbits_size (Fn ("contents", [smt])); Fn ("bvsub", [bvint lbits_index (Big_int.of_int lbits_size); Fn ("len", [smt])]); ] ) in return (Extract (ret_sz - 1, 0, lbits_index, trailing_zeros)) ) | _ -> builtin_type_error "count_trailing_zeros" [v] (Some ret_ctyp) let rec builtin_eq_anything x y = match (cval_ctyp x, cval_ctyp y) with | (CT_struct _ as xt), (CT_struct _ as yt) -> let* l = current_location in let* ctx = get_context in let xfields = Jib_compile.struct_field_bindings l ctx xt |> snd |> Bindings.bindings in let yfields = Jib_compile.struct_field_bindings l ctx yt |> snd |> Bindings.bindings in let* fields = if List.compare_lengths xfields yfields <> 0 then Reporting.unreachable l __POS__ "Tried comparing struct with different number of fields" else List.map2 (fun (f1, ctyp1) (f2, ctyp2) -> if Id.compare f1 f2 <> 0 then Reporting.unreachable l __POS__ "Tried comparing struct with different fields" else builtin_eq_anything (V_field (x, f1, ctyp1)) (V_field (y, f2, ctyp2)) ) xfields yfields |> sequence in return (Fn ("and", fields)) | (CT_variant _ as xt), (CT_variant _ as yt) -> let* l = current_location in let* ctx = get_context in let xctors = Jib_compile.variant_constructor_bindings l ctx xt |> snd |> Bindings.bindings in let yctors = Jib_compile.variant_constructor_bindings l ctx yt |> snd |> Bindings.bindings in let* constructors = if List.compare_lengths xctors yctors <> 0 then Reporting.unreachable l __POS__ "Tried comparing unions with different number of constructors" else List.map2 (fun (f1, ctyp1) (f2, ctyp2) -> if Id.compare f1 f2 <> 0 then Reporting.unreachable l __POS__ "Tried comparing union with different constructors" else let* xsmt = smt_cval x in let* ysmt = smt_cval y in let same_ctor = Fn ("and", [Tester (f1, xsmt); Tester (f2, ysmt)]) in let* ctor_cmp = builtin_eq_anything (V_ctor_unwrap (x, (f1, []), ctyp1)) (V_ctor_unwrap (y, (f2, []), ctyp2)) in return (Fn ("and", [same_ctor; ctor_cmp])) ) xctors yctors |> sequence in return (Fn ("or", constructors)) | (CT_fbits _ | CT_lbits), (CT_fbits _ | CT_lbits) -> builtin_eq_bits x y | CT_bit, CT_bit -> let* x = smt_cval x in let* y = smt_cval y in return (Fn ("=", [x; y])) | CT_bool, CT_bool -> let* x = smt_cval x in let* y = smt_cval y in return (Fn ("=", [x; y])) | (CT_constant _ | CT_fint _ | CT_lint), (CT_constant _ | CT_fint _ | CT_lint) -> builtin_eq_int x y | CT_unit, CT_unit -> return (Bool_lit true) | CT_enum _, CT_enum _ -> let* x = smt_cval x in let* y = smt_cval y in return (Fn ("=", [x; y])) | CT_fvector (n, _), CT_fvector (m, _) -> if n <> m then return (Bool_lit false) else let* x = smt_cval x in let* y = smt_cval y in return (Fn ( "and", List.init n (fun i -> let i = bvpint (required_width (Big_int.of_int (n - 1)) - 1) (Big_int.of_int i) in Fn ("=", [Fn ("select", [x; i]); Fn ("select", [y; i])]) ) ) ) | CT_list ctyp1, CT_list ctyp2 -> let* l = current_location in let* x = smt_cval x in let* y = smt_cval y in let* f = Primop_gen.eq_list l builtin_eq_anything ctyp1 ctyp2 in return (Fn (f, [x; y])) | _, _ -> builtin_type_error "eq_anything" [x; y] None let builtin_vector_init len elem ret_ctyp = match ret_ctyp with | CT_fvector (len, elem_ctyp) -> let* smt = smt_cval elem in let* smt = smt_conversion ~into:elem_ctyp ~from:(cval_ctyp elem) smt in return (Fn ("Array", List.init len (fun _ -> smt))) | _ -> builtin_type_error "vector_init" [len; elem] (Some ret_ctyp) let unary_smt op v _ = let* smt = smt_cval v in return (Fn (op, [smt])) let binary_smt op v1 v2 _ = let* smt1 = smt_cval v1 in let* smt2 = smt_cval v2 in return (Fn (op, [smt1; smt2])) let arity_error = let* l = current_location in raise (Reporting.unreachable l __POS__ "Trying to generate primitive with incorrect number of arguments") let unary_primop f = Some (fun args ret_ctyp -> match args with [v] -> f v ret_ctyp | _ -> arity_error) let unary_primop_simple f = Some (fun args _ -> match args with [v] -> f v | _ -> arity_error) let binary_primop f = Some (fun args ret_ctyp -> match args with [v1; v2] -> f v1 v2 ret_ctyp | _ -> arity_error) let binary_primop_simple f = Some (fun args _ -> match args with [v1; v2] -> f v1 v2 | _ -> arity_error) let ternary_primop f = Some (fun args ret_ctyp -> match args with [v1; v2; v3] -> f v1 v2 v3 ret_ctyp | _ -> arity_error) let builtin ?(allow_io = true) ?(undefined = Undefined_disable) = function | "eq_bit" -> binary_primop (binary_smt "=") | "eq_bool" -> binary_primop (binary_smt "=") | "eq_string" -> binary_primop (binary_smt "=") | "eq_int" -> binary_primop_simple builtin_eq_int | "not" -> unary_primop (unary_smt "not") | "lt" -> binary_primop_simple builtin_lt | "lteq" -> binary_primop_simple builtin_lteq | "gt" -> binary_primop_simple builtin_gt | "gteq" -> binary_primop_simple builtin_gteq | "add_int" -> binary_primop builtin_add_int | "sub_int" -> binary_primop builtin_sub_int | "mult_int" -> binary_primop builtin_mult_int | "neg_int" -> unary_primop builtin_neg_int | "abs_int" -> unary_primop builtin_abs_int | "max_int" -> binary_primop builtin_max_int | "min_int" -> binary_primop builtin_min_int | "tdiv_int" -> binary_primop builtin_tdiv_int | "tmod_int" -> binary_primop builtin_tmod_int | "ediv_int" -> binary_primop builtin_ediv_int | "emod_int" -> binary_primop builtin_emod_int | "pow2" -> unary_primop builtin_pow2 | "zeros" -> unary_primop builtin_zeros | "ones" -> unary_primop builtin_ones | "zero_extend" -> binary_primop builtin_zero_extend | "sign_extend" -> binary_primop builtin_sign_extend | "sail_signed" -> unary_primop builtin_signed | "sail_unsigned" -> unary_primop builtin_unsigned | "slice" -> ternary_primop builtin_slice | "slice_inc" -> ternary_primop builtin_slice_inc | "add_bits" -> binary_primop (builtin_arith_bits "bvadd") | "add_bits_int" -> binary_primop (builtin_arith_bits_int "bvadd") | "sub_bits" -> binary_primop (builtin_arith_bits "bvsub") | "sub_bits_int" -> binary_primop (builtin_arith_bits_int "bvsub") | "append" -> binary_primop builtin_append | "get_slice_int" -> ternary_primop builtin_get_slice_int | "eq_bits" -> binary_primop_simple builtin_eq_bits | "neq_bits" -> binary_primop_simple builtin_neq_bits | "not_bits" -> unary_primop builtin_not_bits | "sail_truncate" -> binary_primop builtin_sail_truncate | "sail_truncateLSB" -> binary_primop builtin_sail_truncateLSB | "shiftl" -> binary_primop (builtin_shift "bvshl") | "shiftr" -> binary_primop (builtin_shift "bvlshr") | "arith_shiftr" -> binary_primop (builtin_shift "bvashr") | "shift_bits_left" -> binary_primop (builtin_shift_by_bits "bvshl") | "shift_bits_right" -> binary_primop (builtin_shift_by_bits "bvlshr") | "and_bits" -> binary_primop (builtin_bitwise "bvand") | "or_bits" -> binary_primop (builtin_bitwise "bvor") | "xor_bits" -> binary_primop (builtin_bitwise "bvxor") | "vector_init" -> binary_primop builtin_vector_init | "vector_access" -> binary_primop builtin_vector_access | "vector_access_inc" -> binary_primop builtin_vector_access_inc | "vector_subrange" -> ternary_primop builtin_vector_subrange | "vector_subrange_inc" -> ternary_primop builtin_vector_subrange_inc | "vector_update" -> ternary_primop builtin_vector_update | "vector_update_inc" -> ternary_primop builtin_vector_update_inc | "vector_update_subrange" -> Some (fun args ret_ctyp -> match args with [v1; v2; v3; v4] -> builtin_vector_update_subrange v1 v2 v3 v4 ret_ctyp | _ -> arity_error ) | "vector_update_subrange_inc" -> Some (fun args ret_ctyp -> match args with | [v1; v2; v3; v4] -> builtin_vector_update_subrange_inc v1 v2 v3 v4 ret_ctyp | _ -> arity_error ) | "length" -> unary_primop builtin_length | "replicate_bits" -> binary_primop builtin_replicate_bits | "count_leading_zeros" -> unary_primop builtin_count_leading_zeros | "count_trailing_zeros" -> unary_primop builtin_count_trailing_zeros | "eq_real" -> binary_primop (binary_smt "=") | "neg_real" -> unary_primop (unary_smt "-") | "add_real" -> binary_primop (binary_smt "+") | "sub_real" -> binary_primop (binary_smt "-") | "mult_real" -> binary_primop (binary_smt "*") | "div_real" -> binary_primop (binary_smt "/") | "lt_real" -> binary_primop (binary_smt "<") | "gt_real" -> binary_primop (binary_smt ">") | "lteq_real" -> binary_primop (binary_smt "<=") | "gteq_real" -> binary_primop (binary_smt ">=") | "concat_str" -> binary_primop_simple (fun str1 str2 -> let* str1 = smt_cval str1 in let* str2 = smt_cval str2 in return (Fn ("str.++", [str1; str2])) ) | "print_bits" when allow_io -> binary_primop_simple (fun str bv -> let* l = current_location in let op = Primop_gen.print_bits l (cval_ctyp bv) in let* str = smt_cval str in let* bv = smt_cval bv in return (Fn (op, [str; bv])) ) | "string_of_bits" -> unary_primop_simple (fun bv -> let* l = current_location in let op = Primop_gen.string_of_bits l (cval_ctyp bv) in let* bv = smt_cval bv in return (Fn (op, [bv])) ) | "dec_str" -> unary_primop_simple (fun bv -> let* l = current_location in let op = Primop_gen.dec_str l (cval_ctyp bv) in let* bv = smt_cval bv in return (Fn (op, [bv])) ) | "hex_str" -> unary_primop_simple (fun bv -> let* l = current_location in let op = Primop_gen.hex_str l (cval_ctyp bv) in let* bv = smt_cval bv in return (Fn (op, [bv])) ) | "hex_str_upper" -> unary_primop_simple (fun bv -> let* l = current_location in let op = Primop_gen.hex_str_upper l (cval_ctyp bv) in let* bv = smt_cval bv in return (Fn (op, [bv])) ) | "sail_assert" when allow_io -> binary_primop_simple (fun b msg -> let* b = smt_cval b in let* msg = smt_cval msg in return (Fn ("sail_assert", [b; msg])) ) | "reg_deref" when allow_io -> unary_primop_simple (fun reg_ref -> match cval_ctyp reg_ref with | CT_ref ctyp -> let* reg_ref = smt_cval reg_ref in let op = "sail_reg_deref_" ^ Util.zencode_string (string_of_ctyp ctyp) in return (Fn (op, [reg_ref])) | _ -> let* l = current_location in Reporting.unreachable l __POS__ "reg_deref given non register reference" ) | "sail_cons" -> binary_primop_simple (fun x xs -> let* x = smt_cval x in let* xs = smt_cval xs in return (Fn ("cons", [x; xs])) ) | "eq_anything" -> binary_primop_simple builtin_eq_anything | "id" -> unary_primop_simple smt_cval | _ -> None end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>