package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
dune-project
Dependency
Authors
Maintainers
Sources
lambdapi-3.0.0.tbz
sha256=1066aed2618fd8e6a400c5147dbf55ea977ce8d3fe2e518ac6785c6775a1b8be
sha512=f7f499626aba92e070ae69581299a58525973fdbfd04a160ed3ac89209fb6cbe307b816d0b23e1b75bc83467ce8b4b0530c6f9816eaf58f7a07fde65a450106c
doc/src/lambdapi.core/print.ml.html
Source file print.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
(** Pretty-printing for the core AST. The functions of this module are used for printing terms and other objects defined in the {!module:Term} module. This is mainly used for displaying log messages, and feedback in case of success or error while type-checking terms or testing convertibility. *) open Lplib open Base open Extra open Timed open Common open Debug open Name open Term open Sig_state (** Logging function for printing. *) let log = Logger.make 'p' "prnt" "pretty-printing" let log = log.pp (***************************************************************************** printing flags *****************************************************************************) (** Current signature state. *) let sig_state : sig_state ref = ref Sig_state.dummy (** Flag for printing the domains of λ-abstractions. *) let print_domains : bool ref = Console.register_flag "print_domains" false (** Flag for printing implicit arguments. *) let print_implicits : bool ref = Console.register_flag "print_implicits" false (** Flag for printing the type of uninstanciated metavariables. Remark: this does not generate parsable terms; use for debug only. *) let print_meta_types : bool ref = Console.register_flag "print_meta_types" false (** Flag for printing contexts in unification problems. *) let print_contexts : bool ref = Console.register_flag "print_contexts" false (** Flag for printing metavariable arguments. *) let print_meta_args : bool ref = Console.register_flag "print_meta_args" false (***************************************************************************** printing functions *****************************************************************************) (*let get_safe_prefix s idmap = let s',idmap' = get_safe_prefix s idmap in log "get_safe_prefix(%S,%a) = (%S,%a)" s (D.strmap D.int) idmap s' (D.strmap D.int) idmap'; s',idmap'*) let safe_unbind_no_check (idmap:int StrMap.t) (b:binder) : (var * term) * int StrMap.t = let name, idmap = get_safe_prefix (binder_name b) idmap in unbind ~name b, idmap let safe_unbind (idmap:int StrMap.t) (b:binder): (var * term) * int StrMap.t = if binder_occur b then safe_unbind_no_check idmap b else unbind b, idmap let assoc : Pratter.associativity pp = fun ppf assoc -> match assoc with | Neither -> () | Left -> out ppf " left" | Right -> out ppf " right" let notation : 'a pp -> 'a notation pp = fun elt -> let rec notation ppf = function | Prefix(p) -> out ppf "prefix %a" elt p | Infix(a,p) -> out ppf "infix%a %a" assoc a elt p | Postfix(p) -> out ppf "postfix %a" elt p | Succ n -> notation ppf n | Quant -> out ppf "quantifier" | _ -> () in notation let uid : string pp = string let path : Path.t pp = Path.pp let prop : prop pp = fun ppf p -> match p with | AC true -> out ppf "left associative commutative " | AC false -> out ppf "associative commutative " | Assoc true -> out ppf "left associative " | Assoc false -> out ppf "associative " | Const -> out ppf "constant " | Commu -> out ppf "commutative " | Defin -> () | Injec -> out ppf "injective " let expo : expo pp = fun ppf e -> match e with | Privat -> out ppf "private " | Protec -> out ppf "protected " | Public -> () let match_strat : match_strat pp = fun ppf s -> match s with | Eager -> () | Sequen -> out ppf "sequential " let do_not_qualify = ref false let no_qualif f = let saved = !do_not_qualify in do_not_qualify := true ; let res = f () in do_not_qualify := saved ; res let sym : sym pp = fun ppf s -> if !print_implicits && s.sym_impl <> [] then out ppf "@"; let ss = !sig_state and n = s.sym_name and p = s.sym_path in if !do_not_qualify || Path.Set.mem p ss.open_paths then uid ppf n else match Path.Map.find_opt p ss.path_alias with | None -> (* Hack for printing symbols replacing metavariables in infer.ml unqualified. *) if n <> "" && let c = n.[0] in c = '$' || c = '?' then uid ppf n else out ppf "%a.%a" path p uid n | Some alias -> out ppf "%a.%a" uid alias uid n let var : var pp = fun ppf x -> uid ppf (base_name x) let meta : meta pp = fun ppf m -> out ppf "?%d" m.meta_key (** Exception raised when trying to convert a term into a nat. *) exception Not_a_nat let builtin name = try StrMap.find name (!sig_state).builtins with Not_found -> raise Not_a_nat (** [nat_of_term t] converts a term into a natural number. @raise Not_a_nat if this is not possible. *) let nat_of_term : term -> int = fun t -> let zero = builtin "nat_zero" and succ = builtin "nat_succ" in let rec nat acc = fun t -> match get_args t with | (Symb s, [u]) when s == succ -> nat (acc+1) u | (Symb s, []) when s == zero -> acc | _ -> raise Not_a_nat in nat 0 t (** [pos_of_term t] converts a term into a positive number. @raise Not_a_nat if this is not possible. *) let pos_of_term : term -> int = fun t -> let one = builtin "pos_one" and dbl = builtin "pos_double" and suc_dbl = builtin "pos_succ_double" in let rec pos = fun t -> match get_args t with | (Symb s, [u]) when s == dbl -> 2 * (pos u) | (Symb s, [u]) when s == suc_dbl -> (2 * pos u) + 1 | (Symb s, []) when s == one -> 1 | _ -> raise Not_a_nat in pos t (** [int_of_term t] converts a term into a positive number. @raise Not_a_nat if this is not possible. *) let int_of_term : term -> int = fun t -> let zero = builtin "int_zero" and pos = builtin "int_positive" and neg = builtin "int_negative" in match get_args t with | (Symb s, [u]) when s == pos -> pos_of_term u | (Symb s, [u]) when s == neg -> - (pos_of_term u) | (Symb s, []) when s == zero -> 0 | _ -> raise Not_a_nat (** [are_quant_args args] returns [true] iff [args] has only one argument that is an abstraction. *) let are_quant_args : term list -> bool = fun args -> match args with | [b] -> is_abst b | _ -> false (** The possible priority levels are [`Func] (top level, including abstraction and product), [`Appl] (application) and [`Atom] (smallest priority). *) type priority = [`Func | `Appl | `Atom] let rec pp p idmap ppf t = if Logger.log_enabled() then log "%a %a" (D.strmap D.int) idmap Raw.term t; let (h, args) = get_args t in (* standard application *) let pp_appl h args = match args with | [] -> head idmap (p <> `Func) ppf h | args -> if p = `Atom then out ppf "("; head idmap true ppf h; List.iter (out ppf " %a" (atom idmap)) args; if p = `Atom then out ppf ")" in (* postfix symbol application *) let postfix h s args = match args with | l::args -> (* Can be improved by looking at symbol priority. *) if p <> `Func then out ppf "("; if args = [] then out ppf "%a %a" (appl idmap) l sym s else out ppf "(%a %a)" (appl idmap) l sym s; List.iter (out ppf " %a" (appl idmap)) args; if p <> `Func then out ppf ")" | [] -> out ppf "("; head idmap true ppf h; out ppf ")" in match h with | Symb(s) -> if !print_implicits && s.sym_impl <> [] then pp_appl h args else let number f t = try out ppf "%i" (f t) with Not_a_nat -> pp_appl h args in let args = LibTerm.remove_impl_args s args in begin match !(s.sym_nota) with | Quant when are_quant_args args -> if p <> `Func then out ppf "("; quantifier idmap ppf s args; if p <> `Func then out ppf ")" | Postfix _ -> postfix h s args | Infix _ -> begin match args with | l::r::args -> if p <> `Func then out ppf "("; (* Can be improved by looking at symbol priority. *) if args = [] then out ppf "%a %a %a" (appl idmap) l sym s (appl idmap) r else out ppf "(%a %a %a)" (appl idmap) l sym s (appl idmap) r; List.iter (out ppf " %a" (appl idmap)) args; if p <> `Func then out ppf ")" | [] -> out ppf "("; head idmap true ppf h; out ppf ")" | _ -> if p = `Atom then out ppf "("; out ppf "("; head idmap true ppf h; out ppf ")"; List.iter (out ppf " %a" (atom idmap)) args; if p = `Atom then out ppf ")" end | Zero | IntZero -> out ppf "0" | Succ (Postfix _) -> (try out ppf "%i" (nat_of_term t) with Not_a_nat -> postfix h s args) | Succ _ -> number nat_of_term t | PosOne -> out ppf "1" | PosDouble | PosSuccDouble -> number pos_of_term t | IntPos | IntNeg -> number int_of_term t | _ -> pp_appl h args end | _ -> pp_appl h args and quantifier idmap ppf s args = (* assume [are_quant_args s args = true] *) match args with | [b] -> begin match unfold b with | Abst(a,b) -> let (x,p),idmap' = safe_unbind idmap b in out ppf "`%a %a%a, %a" sym s var x (typ_in idmap) a (func idmap') p | _ -> assert false end | _ -> assert false and head idmap wrap ppf t = let env ppf ts = if Array.length ts > 0 then out ppf ".[%a]" (Array.pp (func idmap) ";") ts in match unfold t with | Appl(_,_) -> assert false (* Application is handled separately, unreachable. *) | Wild -> out ppf "_" | TRef(r) -> (match !r with | None -> out ppf "<TRef>" | Some t -> atom idmap ppf t) (* Atoms are printed inconditonally. *) | Vari(x) -> var ppf x | Type -> out ppf "TYPE" | Kind -> out ppf "KIND" | Symb(s) -> sym ppf s | Meta(m,e) -> if !print_meta_types then out ppf "(?%d:%a)" m.meta_key (func idmap) !(m.meta_type) else out ppf "?%d" m.meta_key; if !print_meta_args then env ppf e | Plac(_) -> out ppf "_" | Patt(_,n,e) -> out ppf "$%a%a" uid n env e | Bvar _ -> assert false (* Product and abstraction (only them can be wrapped). *) | Abst(a,b) -> if wrap then out ppf "("; if binder_occur b then begin let (x,t),idmap' = safe_unbind_no_check idmap b in out ppf "λ %a" var x; if !print_domains then out ppf ": %a, %a" (func idmap) a (func idmap') t else abstractions idmap' ppf t end else begin let _,t = unbind b in out ppf "λ _"; if !print_domains then out ppf ": %a, %a" (func idmap) a (func idmap) t else abstractions idmap ppf t end; if wrap then out ppf ")" | Prod(a,b) -> if wrap then out ppf "("; if binder_occur b then let (x,t),idmap' = safe_unbind_no_check idmap b in out ppf "Π %a: %a, %a" var x (appl idmap) a (func idmap') t else begin let _,t = unbind b in out ppf "%a → %a" (appl idmap) a (func idmap) t end; if wrap then out ppf ")" | LLet(a,t,b) -> if wrap then out ppf "("; out ppf "let "; if binder_occur b then begin let (x,u),idmap' = safe_unbind_no_check idmap b in var ppf x; if !print_domains then out ppf ": %a" (atom idmap) a; out ppf " ≔ %a in %a" (func idmap) t (func idmap') u end else begin let _,u = unbind b in out ppf "_"; if !print_domains then out ppf ": %a" (atom idmap) a; out ppf " ≔ %a in %a" (func idmap) t (func idmap) u end; if wrap then out ppf ")" and abstractions idmap ppf t = match unfold t with | Abst(_,b) -> if binder_occur b then let (x,t),idmap' = safe_unbind_no_check idmap b in out ppf " %a%a" var x (abstractions idmap') t else let _,t = unbind b in out ppf " _%a" (abstractions idmap) t | t -> out ppf ", %a" (func idmap) t and typ_in : int StrMap.t -> term pp = fun idmap ppf a -> if !print_domains then out ppf ": %a" (func idmap) a and atom idmap ppf t = pp `Atom idmap ppf t and appl idmap ppf t = pp `Appl idmap ppf t and func idmap ppf t = pp `Func idmap ppf t let term_in = func let term = term_in StrMap.empty let env ppf ts = if Array.length ts > 0 then out ppf ".[%a]" (Array.pp term ";") ts let rec prod_in : int StrMap.t -> (term * bool list) pp = let decl idmap ppf (x,t) = out ppf "%a : %a" var x (func idmap) t in let decl i idmap ppf d = if i then out ppf "[%a]" (decl idmap) d else decl idmap ppf d in fun idmap ppf (t,impl) -> match unfold t, impl with | Prod(a,b), i::impl -> if binder_occur b then let (x,t),idmap' = safe_unbind_no_check idmap b in out ppf "Π %a, %a" (decl i idmap) (x,a) (prod_in idmap') (t,impl) else let x,t = unbind ~name:"_" b in out ppf "Π %a, %a" (decl i idmap) (x,a) (prod_in idmap) (t,impl) | _ -> func idmap ppf t let prod = prod_in StrMap.empty let sym_type ppf s = prod ppf (!(s.sym_type), s.sym_impl) let sym_rule : sym_rule pp = fun ppf r -> out ppf "%a ↪ %a" term (lhs r) term (rhs r) let rule_of : sym -> rule pp = fun s ppf r -> sym_rule ppf (s,r) let unif_rule : rule pp = rule_of Unif_rule.equiv let rules_of : sym pp = fun ppf s -> D.list (rule_of s) ppf !(s.sym_rules) (* for debug only *) let typ = typ_in StrMap.empty (*let term ppf t = out ppf "<%a printed %a>" Term.term t term t*) (*let term = Raw.term*) (* ends with a space if [!print_contexts = true] *) let ctxt : ctxt pp = fun ppf ctx -> if !print_contexts then begin let def ppf t = out ppf " ≔ %a" term t in let decl ppf (x,a,t) = out ppf "%a%a%a" var x typ a (Option.pp def) t in out ppf "%a%s⊢ " (List.pp decl ", ") (List.rev ctx) (if ctx <> [] then " " else "") end let typing : constr pp = fun ppf (ctx, t, u) -> out ppf "@[<h>%a%a : %a@]" ctxt ctx term t term u let constr : constr pp = fun ppf (ctx, t, u) -> out ppf "@[<h>%a%a@ ≡ %a@]" ctxt ctx term t term u let constrs : constr list pp = fun ppf cs -> let pp_sep ppf () = out ppf "@ ;" in out ppf "@[<v>[%a]@]" (Format.pp_print_list ~pp_sep constr) cs let metaset : MetaSet.t pp = D.iter ~sep:(fun ppf () -> out ppf ",") MetaSet.iter meta let problem : problem pp = fun ppf p -> out ppf "{ recompute=%b;@ metas={%a};@ to_solve=%a;@ unsolved=%a }" !p.recompute metaset !p.metas constrs !p.to_solve constrs !p.unsolved
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>