Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
module L = List
include module type of struct include L end
Compare the lengths of two lists. compare_lengths l1 l2
is equivalent to compare (length l1) (length l2)
, except that the computation stops after reaching the end of the shortest list.
Compare the length of a list to an integer. compare_length_with l len
is equivalent to compare (length l) len
, except that the computation stops after at most len
iterations on the list.
is_empty l
is true if and only if l
has no elements. It is equivalent to compare_length_with l 0 = 0
.
Return the n
-th element of the given list. The first element (head of the list) is at position 0.
Return the n
-th element of the given list. The first element (head of the list) is at position 0. Return None
if the list is too short.
append l0 l1
appends l1
to l0
. Same function as the infix operator @
.
rev_append l1 l2
reverses l1
and concatenates it with l2
. This is equivalent to (
rev
l1) @ l2
.
Concatenate a list of lists. The elements of the argument are all concatenated together (in the same order) to give the result. Not tail-recursive (length of the argument + length of the longest sub-list).
Same as concat
. Not tail-recursive (length of the argument + length of the longest sub-list).
equal eq [a1; ...; an] [b1; ..; bm]
holds when the two input lists have the same length, and for each pair of elements ai
, bi
at the same position we have eq ai bi
.
Note: the eq
function may be called even if the lists have different length. If you know your equality function is costly, you may want to check compare_lengths
first.
compare cmp [a1; ...; an] [b1; ...; bm]
performs a lexicographic comparison of the two input lists, using the same 'a -> 'a -> int
interface as Stdlib.compare
:
a1 :: l1
is smaller than a2 :: l2
(negative result) if a1
is smaller than a2
, or if they are equal (0 result) and l1
is smaller than l2
[]
is strictly smaller than non-empty listsNote: the cmp
function will be called even if the lists have different lengths.
iter f [a1; ...; an]
applies function f
in turn to [a1; ...; an]
. It is equivalent to f a1; f a2; ...; f an
.
Same as iter
, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.
map f [a1; ...; an]
applies function f
to a1, ..., an
, and builds the list [f a1; ...; f an]
with the results returned by f
.
Same as map
, but the function is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.
fold_left_map
is a combination of fold_left
and map
that threads an accumulator through calls to f
.
fold_left f init [b1; ...; bn]
is f (... (f (f init b1) b2) ...) bn
.
fold_right f [a1; ...; an] init
is f a1 (f a2 (... (f an init) ...))
. Not tail-recursive.
iter2 f [a1; ...; an] [b1; ...; bn]
calls in turn f a1 b1; ...; f an bn
.
map2 f [a1; ...; an] [b1; ...; bn]
is [f a1 b1; ...; f an bn]
.
fold_left2 f init [a1; ...; an] [b1; ...; bn]
is f (... (f (f init a1 b1) a2 b2) ...) an bn
.
fold_right2 f [a1; ...; an] [b1; ...; bn] init
is f a1 b1 (f a2 b2 (... (f an bn init) ...))
.
for_all f [a1; ...; an]
checks if all elements of the list satisfy the predicate f
. That is, it returns (f a1) && (f a2) && ... && (f an)
for a non-empty list and true
if the list is empty.
exists f [a1; ...; an]
checks if at least one element of the list satisfies the predicate f
. That is, it returns (f a1) || (f a2) || ... || (f an)
for a non-empty list and false
if the list is empty.
Same as for_all
, but for a two-argument predicate.
Same as exists
, but for a two-argument predicate.
Same as mem
, but uses physical equality instead of structural equality to compare list elements.
find f l
returns the first element of the list l
that satisfies the predicate f
.
find f l
returns the first element of the list l
that satisfies the predicate f
. Returns None
if there is no value that satisfies f
in the list l
.
find_index f xs
returns Some i
, where i
is the index of the first element of the list xs
that satisfies f x
, if there is such an element.
It returns None
if there is no such element.
Same as find_map
, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.
filter f l
returns all the elements of the list l
that satisfy the predicate f
. The order of the elements in the input list is preserved.
find_all
is another name for filter
.
Same as filter
, but the predicate is applied to the index of the element as first argument (counting from 0), and the element itself as second argument.
partition f l
returns a pair of lists (l1, l2)
, where l1
is the list of all the elements of l
that satisfy the predicate f
, and l2
is the list of all the elements of l
that do not satisfy f
. The order of the elements in the input list is preserved.
val partition_map : ('a -> ('b, 'c) Either.t) -> 'a list -> 'b list * 'c list
partition_map f l
returns a pair of lists (l1, l2)
such that, for each element x
of the input list l
:
f x
is Left y1
, then y1
is in l1
, andf x
is Right y2
, then y2
is in l2
.The output elements are included in l1
and l2
in the same relative order as the corresponding input elements in l
.
In particular, partition_map (fun x -> if f x then Left x else Right x) l
is equivalent to partition f l
.
assoc a l
returns the value associated with key a
in the list of pairs l
. That is, assoc a [ ...; (a,b); ...] = b
if (a,b)
is the leftmost binding of a
in list l
.
assoc_opt a l
returns the value associated with key a
in the list of pairs l
. That is, assoc_opt a [ ...; (a,b); ...] = Some b
if (a,b)
is the leftmost binding of a
in list l
. Returns None
if there is no value associated with a
in the list l
.
Same as assoc
, but uses physical equality instead of structural equality to compare keys.
Same as assoc_opt
, but uses physical equality instead of structural equality to compare keys.
Same as assoc
, but simply return true
if a binding exists, and false
if no bindings exist for the given key.
Same as mem_assoc
, but uses physical equality instead of structural equality to compare keys.
remove_assoc a l
returns the list of pairs l
without the first pair with key a
, if any. Not tail-recursive.
Same as remove_assoc
, but uses physical equality instead of structural equality to compare keys. Not tail-recursive.
Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn]
is [(a1,b1); ...; (an,bn)]
.
Sort a list in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see Array.sort for a complete specification). For example, Stdlib.compare
is a suitable comparison function. The resulting list is sorted in increasing order. sort
is guaranteed to run in constant heap space (in addition to the size of the result list) and logarithmic stack space.
The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.
Same as sort
, but the sorting algorithm is guaranteed to be stable (i.e. elements that compare equal are kept in their original order).
The current implementation uses Merge Sort. It runs in constant heap space and logarithmic stack space.
Same as sort
or stable_sort
, whichever is faster on typical input.
Same as sort
, but also remove duplicates.
Merge two lists: Assuming that l1
and l2
are sorted according to the comparison function cmp
, merge cmp l1 l2
will return a sorted list containing all the elements of l1
and l2
. If several elements compare equal, the elements of l1
will be before the elements of l2
. Not tail-recursive (sum of the lengths of the arguments).
val to_seq : 'a list -> 'a Seq.t
Iterate on the list.
val of_seq : 'a Seq.t -> 'a list
Create a list from a sequence.
val pp : 'a Base.pp -> unit Base.outfmt -> 'a list Base.pp
pp elt sep ppf l
prints the list l
on the formatter ppf
using sep
as separator, and elt
for printing the elements.
eq eq_elt l1 l2
tests the equality of l1
and l2
, comparing their elements with eq_elt
.
val find_map : ('a -> 'b option) -> 'a t -> 'b option
find_map f l
applies f
to the elements of l
in order, and returns the first result of the form Some v
, or None
if none exist.
filter_map f l
applies f
to every element of l
, filters out the None
elements and returns the list of the arguments of the Some
elements.
val concat_map : ('a -> 'b list) -> 'a t -> 'b list
filter_rev_map f l
is equivalent to filter_map f (List.rev l)
, but it only traverses the list once and is tail-recursive.
filteri_map f l
applies f
element wise on l
and keeps x
such that for e
in l
, f e = Some(x)
.
cut l k
returns a pair of lists (l1, l2)
such that l1
has length min (List.length l) k
and l1 @ l2
is equal to l
.
add_array a1 a2 l
returns a list containing the elements of l
, and the (corresponding) elements of a1
and a2
. Note that a1
and a2
should have the same lenght otherwise Invalid_argument
is raised.
same_length l1 l2
returns true
whenever l1
and l2
are lists of the same length. The function stops as soon as possible.
max ?cmp l
finds the max of list l
with compare function ?cmp
defaulting to Stdlib.compare
.
val assoc_eq : 'a Base.eq -> 'a -> ('a * 'b) list -> 'b
assoc_eq e k l
is List.assoc k l
with equality function e
.
val remove_phys_dups : 'a list -> 'a t
remove_phys_dups l
uniqify list l
keeping only the last element, using physical equality.
destruct l i
returns a triple (left_rev, e, right)
where e
is the i
-th element of l
, left_rev
is the reversed prefix of l
up to its i
-th element (excluded), and right
is the remaining suffix of l
(starting at its i+1
-th element).
reconstruct left_rev l right
concatenates (reversed) left_rev
, l
and right
. This function will typically be used in combination with destruct
to insert a sublist l
in the place of the element at the specified position in the specified list.
init n f
creates a list with f 0
up to f n
as its elements. Note that Invalid_argument
is raised if n
is negative.
val mem_sorted : 'a Base.cmp -> 'a -> 'a list -> bool
mem_sorted cmp x l
tells whether x
is in l
assuming that l
is sorted wrt cmp
.
val insert : 'a Base.cmp -> 'a -> 'a list -> 'a list
insert cmp x l
inserts x
in the list l
assuming that l
is sorted in increasing order wrt cmp
.
val insert_uniq : 'a Base.cmp -> 'a -> 'a list -> 'a list
insert_uniq cmp x l
inserts x
in the list l
assuming that l
is sorted in increasing order wrt cmp
, but only if x
does not occur in l
.
rev_mapi f [x1;..;xn]
returns f (n-1) xn; ..; f 0 x1
.
swap i xs
put the i-th element (counted from 0) of xs
at the head.
val fold_left_while : ('a -> 'b -> 'a) -> ('b -> bool) -> 'a -> 'b t -> 'a
fold_left_while f cond a [b1 b2 ..]
computes (f..(f (f a b1) b2)..bm) where cond
is true for b1..bm and false for b_m+1 or bm is last element
remove_first f l
removes from l
the first element satisfying f
.
split f l
returns the tuple (l1,x,l2)
such that x
is the first element of l
satisying f
, l1
is the sub-list of l
preceding x
, and l2
is the sub-list of l
following x
: l = l1 :: x :: l2
.
iter_head_tail f l
iterates f
on all pairs (head, tail) of l
.
sequence_opt l
is Some [x1; x2; ...]
if all elements of l
are of the form Some xi
, and None
if there is a None
in l
.