package lambdapi
Proof assistant for the λΠ-calculus modulo rewriting
Install
dune-project
Dependency
Authors
Maintainers
Sources
lambdapi-2.2.1.tbz
sha256=ba73f288e435130293408bd44732f1dfc5ec8a8db91c7453c9baf9c740095829
sha512=f88bb92fdb8aee8add60588673040fac012b2eab17c2a1d529c4b7c795cf0e1a9168122dc19889f04a31bda2bb2cf820237cbbe7e319121618aba3d134381756
doc/src/lambdapi.export/xtc.ml.html
Source file xtc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
(** This module provides a function to translate a signature to the XTC format used in the termination competition. @see <http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB/file/tip/xml/xtc.xsd> *) open Lplib open Base open Extra open Timed open Core open Term open Print (** [print_sym ppf s] outputs the fully qualified name of [s] to [ppf]. Modules are separated with ["."]. *) let print_sym : sym pp = fun ppf s -> out ppf "%a.%a" path s.sym_path uid s.sym_name type symb_status = Object_level | Basic_type | Type_cstr (** [status s] returns [Type_cstr] if [s] has a type of the form T1 -> ... -> Tn -> [TYPE] with n > 0, [Basic_type] if [s] has type [TYPE] and [Object_level] otherwise. *) let status : sym -> symb_status = fun s -> (* the argument [b] of [is_arrow_kind] is a boolean saying if we have already gone under a product *) let rec is_arrow_kind : Term.term -> bool -> symb_status = fun t b -> match t with | Prod(_,b) -> is_arrow_kind (snd (Bindlib.unbind b)) true | Type -> if b then Type_cstr else Basic_type | _ -> Object_level in is_arrow_kind !(s.sym_type) false (** [print_term ppf p] outputs XTC format corresponding to the term [t], to [ppf]. *) let rec print_term : int -> string -> term pp = fun i s ppf t -> match unfold t with (* Forbidden cases. *) | Meta(_,_) -> assert false | Plac _ -> assert false | TRef(_) -> assert false | TEnv(_,_) -> assert false | Wild -> assert false | Kind -> assert false (* [TYPE] and products are necessarily at type level *) | Type -> assert false | Prod(_,_) -> assert false (* Printing of atoms. *) | Vari(x) -> out ppf "<var>v_%a</var>@." var x | Symb(s) -> out ppf "<funapp>@.<name>%a</name>@.</funapp>@." print_sym s | Patt(j,n,ts) -> if ts = [||] then out ppf "<var>%s_%i_%s</var>@." s i n else print_term i s ppf (Array.fold_left (fun t u -> mk_Appl(t,u)) (mk_Patt(j,n,[||])) ts) | Appl(t,u) -> out ppf "<application>@.%a%a</application>@." (print_term i s) t (print_term i s) u | Abst(a,t) -> let (x, t) = Bindlib.unbind t in out ppf "<lambda>@.<var>v_%a</var>@.<type>%a<type>@.%a</lambda>@." var x (print_type i s) a (print_term i s) t | LLet(_,t,u) -> print_term i s ppf (Bindlib.subst u t) and print_type : int -> string -> term pp = fun i s ppf t -> match unfold t with (* Forbidden cases. *) | Meta(_,_) -> assert false | Plac _ -> assert false | TRef(_) -> assert false | TEnv(_,_) -> assert false | Wild -> assert false | Kind -> assert false (* Variables are necessarily at object level *) | Vari(_) -> assert false | Patt(_,_,_) -> assert false (* Printing of atoms. *) | Type -> out ppf "<TYPE/>@." | Symb(s) -> out ppf "<basic>%a</basic>@." print_sym s | Appl(t,u) -> out ppf "<application>@.%a%a</application>@." (print_type i s) t (print_term i s) u | Abst(a,t) -> let (x, t) = Bindlib.unbind t in out ppf "<lambda>@.<var>v_%a</var>@.<type>%a<type>@.%a</lambda>@." var x (print_type i s) a (print_type i s) t | Prod(a,b) -> if Bindlib.binder_constant b then out ppf "<arrow>@.<type>@.%a</type>@.<type>@.%a</type>@.</arrow>@." (print_type i s) a (print_type i s) (snd (Bindlib.unbind b)) else let (x, b) = Bindlib.unbind b in out ppf "<arrow>@.<var>v_%a</var>@." var x; out ppf "<type>@.%a</type>@.<type>@.%a</type>@.</arrow>" (print_type i s) a (print_type i s) b | LLet(_,t,u) -> print_type i s ppf (Bindlib.subst u t) (** [print_rule ppf s r] outputs the rule declaration corresponding [r] (on the symbol [s]), to [ppf]. *) let print_rule : Format.formatter -> int -> sym -> rule -> unit = fun ppf i s r -> let x = s,r in let lhs = lhs x and rhs = rhs x in out ppf "<rule>@.<lhs>@.%a</lhs>@." (print_term i s.sym_name) lhs; out ppf "<rhs>@.%a</rhs>@.</rule>@." (print_term i s.sym_name) rhs (** [print_tl_rule] is identical to [print_rule] but for type-level rule *) let print_tl_rule : Format.formatter -> int -> sym -> rule -> unit = fun ppf i s r -> let x = s,r in let lhs = lhs x and rhs = rhs x in out ppf "<typeLevelRule>@.<TLlhs>@.%a</TLlhs>@." (print_type i s.sym_name) lhs; out ppf "<TLrhs>@.%a</TLrhs>@.</typeLevelRule>@." (print_type i s.sym_name) rhs (** [get_vars s r] returns the list of variables used in the rule [r], in the form of a pair containing the name of the variable and its type, inferred by the solver. *) let get_vars : sym -> rule -> (string * Term.term) list = fun s r -> let rule_ctx : tvar option array = Array.make (Array.length r.vars) None in let var_list : tvar list ref = ref [] in let rec subst_patt v t = match t with | Type | Kind | TEnv (_, _) | Meta (_, _) | Plac _ | TRef _ | Wild | Prod (_, _) | LLet(_) (* No let in LHS *) | Vari _ -> assert false | Symb (_) -> t | Abst (t1, b) -> let (x,t2) = Bindlib.unbind b in mk_Abst(subst_patt v t1, bind x lift (subst_patt v t2)) | Appl (t1, t2) -> mk_Appl(subst_patt v t1, subst_patt v t2) | Patt (None, x, a) -> let v_i = new_tvar x in var_list := v_i :: !var_list; Array.fold_left (fun acc t -> mk_Appl(acc,t)) (mk_Vari v_i) a | Patt (Some(i), x, a) -> if v.(i) = None then (let v_i = new_tvar x in var_list := v_i :: !var_list; v.(i) <- Some(v_i)); let v_i = match v.(i) with |Some(vi) -> vi |None -> assert false in Array.fold_left (fun acc t -> mk_Appl(acc,t)) (mk_Vari v_i) a in let lhs = List.fold_left (fun t h -> mk_Appl(t, subst_patt rule_ctx (unfold h))) (mk_Symb s) r.lhs in let ctx = let p = new_problem() in let f l x = (x, (mk_Meta(LibMeta.fresh p mk_Type 0,[||])), None) :: l in List.fold_left f [] !var_list in let p = new_problem() in match Infer.infer_noexn p ctx lhs with | None -> assert false | Some _ -> let cs = List.rev_map (fun (_,t,u) -> (t,u)) !p.to_solve in let ctx = List.map (fun (x,a,_) -> (x,a)) ctx in List.map (fun (v,ty) -> Bindlib.name_of v, List.assoc ty cs) ctx (** [to_XTC ppf sign] outputs a XTC representation of the rewriting system of the signature [sign] to [ppf]. *) let to_XTC : Format.formatter -> Sign.t -> unit = fun ppf sign -> (* Get all the dependencies (every needed symbols and rewriting rules). *) let deps = Sign.dependencies sign in (* Function to iterate over every symbols. *) let iter_symbols : (sym -> unit) -> unit = fun fn -> (* Iterate on all symbols of a signature, excluding ghost symbols. *) let iter_symbols sign = let not_on_ghosts _ s = if not (Unif_rule.mem s) then fn s in StrMap.iter not_on_ghosts Sign.(!(sign.sign_symbols)) in List.iter (fun (_, sign) -> iter_symbols sign) deps in (* Print the prelude and the postlude. *) let prelude = [ "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" ; "<?xml-stylesheet href=\"xtc2tpdb.xsl\" type=\"text/xsl\"?>" ; "<problem xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"" ; "type=\"termination\"" ; "xsi:noNamespaceSchemaLocation=\"http://dev.aspsimon.org/xtc.xsd\">" ; "<trs>" ] in let postlude = [ "</trs>" ; "<strategy>FULL</strategy>" ; "<metainformation>" ; "<originalfilename>Produced from a Dedukti file</originalfilename>" ; "</metainformation>" ; "</problem>" ] in (* Print the object level rewrite rules. *) let print_object_rules : sym -> unit = fun s -> if status s = Object_level then match !(s.sym_def) with | Some(d) -> out ppf "<rule>@.<lhs>@.<funapp>@.<name>%a</name>@.</funapp>@.</lhs>@." print_sym s; out ppf "<rhs>@.%a</rhs>@.</rule>@." (print_term 0 s.sym_name) d | None -> let c = ref 0 in List.iter (fun x -> incr c; print_rule ppf !c s x) !(s.sym_rules) in (* Print the type level rewrite rules. *) let print_type_rules : sym -> unit = fun s -> if status s != Object_level then match !(s.sym_def) with | Some(d) -> out ppf "<rule>@.<lhs>@.<funapp>@.<name>%a</name>@.</funapp>@.</lhs>@." print_sym s; out ppf "<rhs>@.%a</rhs>@.</rule>@." (print_term 0 s.sym_name) d | None -> let c = ref 0 in List.iter (incr c; print_tl_rule ppf !c s) !(s.sym_rules) in (* Print the variable declarations *) let print_vars : sym -> unit = fun s -> let c = ref 0 in List.iter (fun r -> incr c; List.iter (fun (x,ty) -> out ppf "<varDeclaration>@.<var>%s_%i_%s</var>@." s.sym_name !c x; out ppf "<type>@.%a</type>@.</varDeclaration>@." (print_type !c s.sym_name) ty ) (get_vars s r) ) !(s.sym_rules) in (* Print the symbol declarations at object level. *) let print_symbol : sym -> unit = fun s -> if status s = Object_level then ( out ppf "<funcDeclaration>@.<name>%a</name>@." print_sym s; out ppf "<typeDeclaration>@.<type>@.%a</type>@." (print_type 0 s.sym_name) !(s.sym_type); out ppf "</typeDeclaration>@.</funcDeclaration>@." ) in (* Print the type constructor declarations. *) let print_type_cstr : sym -> unit = fun s -> (* We don't declare type constant which do not take arguments for compatibility issue with simply-typed higher order category of the competition. *) if status s = Type_cstr then ( out ppf "<typeConstructorDeclaration>@.<name>%a</name>@." print_sym s; out ppf "<typeDeclaration>@.<type>@.%a</type>@." (print_type 0 s.sym_name) !(s.sym_type); out ppf "</typeDeclaration>@.</typeConstructorDeclaration>@." ) in List.iter (out ppf "%s@.") prelude; out ppf "<rules>@."; iter_symbols print_object_rules; out ppf "</rules>@."; let type_rule_presence = ref false in iter_symbols (fun s -> if status s != Object_level && !(s.sym_def) != None && !(s.sym_rules) != [] then type_rule_presence := true); if !type_rule_presence then ( out ppf "<typeLevelRules>@."; iter_symbols print_type_rules; out ppf "</typeLevelRules>@." ); out ppf "<higherOrderSignature>@."; out ppf "<variableTypeInfo>@."; iter_symbols print_vars; out ppf "</variableTypeInfo>@."; out ppf "<functionSymbolTypeInfo>@."; iter_symbols print_symbol; out ppf "</functionSymbolTypeInfo>@."; let type_cstr_presence = ref false in iter_symbols (fun s -> if status s = Type_cstr then type_cstr_presence := true); if !type_cstr_presence then ( out ppf "<typeConstructorTypeInfo>@."; iter_symbols print_type_cstr; out ppf "</typeConstructorTypeInfo>@." ); out ppf "</higherOrderSignature>@."; List.iter (out ppf "%s@.") postlude
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>