package knights_tour

  1. Overview
  2. Docs
Solves the 'Knights Tour' and various 'Poyomino' puzzles

Install

dune-project
 Dependency

Authors

Maintainers

Sources

knights_tour-0.0.6.tbz
sha256=770624ae4e35d5a58188a1f25e16730d186df8bc4397827fe9a798ea5ca574e3
sha512=b6c7b2473ddf321afaac6b668f9c6820fb8cc872abc494b69edfdff4101c6b660645837b04801e2917c38dd9f19f79bb0a7b029d59a58ddf1e3a235659bab099

doc/src/knights_tour.searchspace/searchspace.ml.html

Source file searchspace.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
module StaQue = Collections.Treequence

type 'a t = 
  | Result of 'a
  | Fork of 'a t StaQue.t
  | Lazy of (unit -> 'a t)

let return x = Result x

let alt2 x y = Fork StaQue.(
  push x (singleton y)
)

let alt choices = Fork (StaQue.of_list choices)

let empty = Fork StaQue.empty

let rec bind a f = match a with
  | Result a -> Lazy (fun () -> (f a))
  | Fork choices -> Fork ( 
    choices |> StaQue.map (fun choice -> bind choice f)
  )
  | Lazy l -> Lazy (fun () ->  bind (l ()) f)

let map f m = bind m (fun a -> return (f a))

let filter pred m = bind m (fun q -> if pred q then return q else empty)

let (|=>) = bind
let (|->) m f = map f m
let (|?>) m p = filter p m
let (++) = alt2

let defer l = Lazy l

let rec range from whle step = defer (fun () -> (
  if whle from then
    return from ++ range (step from) whle step
  else 
    empty
))

let int_range lo hi = range lo ((>=) hi) ((+) 1)

let rec search = function 
  | Result r -> Some (r, empty)
  | Fork choices -> (match StaQue.pop choices with 
    | None -> None
    | Some (first, rest) -> (match search first with
      | None -> search (Fork rest)
      | Some (found, first_rest) -> Some (found, alt2 first_rest (Fork rest))
    )
  )   
  | Lazy l -> l () |> search

type 'a search_fun = 'a t -> ('a * 'a t) option

let cached_for ~iterations getter =
  let counter = ref 0 in
  let cache = ref None in
  fun () -> begin
    counter := !counter + 1;
    if !counter >= iterations || !cache = None then begin
      counter := 0;
      cache := Some (getter ())
    end;
    !cache |> Option.get
  end

let memfree = cached_for ~iterations:10000 Memfree.mem_free_ratio 

(** [scale_to_inifinity x] goes from 0 to infinity as x goes from 0 to 1 *)
let scale_to_inifinity x =
  let divider = 1.0 -. x in
  if divider <= 0.0 then
    Float.infinity
  else
    (x /. divider)

let limit_on_low_memory ~max_memory_ratio () = 
  let free_ratio = memfree () in
  let used_ratio = 1.0 -. free_ratio in
  scale_to_inifinity (used_ratio /. max_memory_ratio)

let rec breadth_search_aux limit stackmon steps stack =
  let steps = ref (steps + 1) in
  let pop worklist =
    let lmt = Float.of_int (StaQue.size worklist) *. limit () in
    if Float.of_int !steps > lmt then (
      (* broaden search by choosing the oldest choice point to explore further *)
      stackmon "pop_end" !steps worklist;
      steps := 0;
      StaQue.pop_end worklist
    ) else ( 
      (* narrow search by choosing the newest choice point to explore further (which tends to
         follow a single 'track/path/subtree' of choices until it is 'exhausted' / reaches a conclusion) *)
        stackmon "pop" !steps worklist;
        StaQue.pop worklist
    ) in
  match pop stack with 
  | None -> None
  | Some (item, stack) -> (match item with
    | Result x -> Some (x, Fork stack)
    | Fork choices -> StaQue.append choices stack 
        |> breadth_search_aux limit stackmon !steps
    | Lazy producer -> StaQue.push (producer ()) stack 
        |> breadth_search_aux limit stackmon !steps
  )
let default_limit () = 1.0

let breadth_search ?(limit=default_limit) ?(stack_mon=fun _ _ _ -> ()) space =
  breadth_search_aux limit stack_mon 0 (StaQue.singleton space) 

let rec to_seq ?(search=search) space () =
  match search space with
  | None -> Seq.Nil
  | Some (fst,rst) -> Seq.Cons (fst, to_seq ~search rst) 

let of_list choices = List.map return choices |> alt

let rec ints_from start = return start ++ defer (fun () -> (ints_from (1 + start)))
let nats = ints_from 0

let rec of_seq alts = Lazy (fun () ->
  match Seq.uncons alts with
  | None -> empty
  | Some(first, rest) -> return first ++ of_seq rest
)

let ( let* ) = bind

let nat_pairs =
  let* x = nats in
  let* y = int_range 0 x in
  return (x,y)

let set_of_compare (type a) (compare : a -> a -> int) =
  let module Comp : Set.OrderedType with type t = a = struct
    type t = a
    let compare = compare
  end in
  let module SetOf = Set.Make(Comp) in
  (module SetOf : Set.S with type elt = a)
  
let no_dup (type a) (compare : a -> a -> int) inputs =
  let module InputSet = (val set_of_compare compare : Set.S with type elt = a) in
  inputs |> to_seq
  |> InputSet.of_seq
  |> InputSet.to_seq
  |> of_seq
  
let%expect_test "range 1..4" = 
  let searchspace = int_range 1 4 in
  to_seq searchspace |> Seq.iter (fun result ->
    Format.printf "%d; " result
  ) ; [%expect{| 1; 2; 3; 4; |}]

let%expect_test "sum of two ranges" =
    (
      let numbers = int_range 1 4 in
      let* x:int = numbers in
      let* y:int = numbers in
        return (Format.sprintf "%d + %d = %d" x y (x + y))
    ) 
    |> to_seq
    |> Seq.iter print_endline
    ; [%expect{|
      1 + 1 = 2
      1 + 2 = 3
      1 + 3 = 4
      1 + 4 = 5
      2 + 1 = 3
      2 + 2 = 4
      2 + 3 = 5
      2 + 4 = 6
      3 + 1 = 4
      3 + 2 = 5
      3 + 3 = 6
      3 + 4 = 7
      4 + 1 = 5
      4 + 2 = 6
      4 + 3 = 7
      4 + 4 = 8 |}]

let%expect_test "find some results in infinite searchspace" = nats
    |> to_seq |> Seq.take 5 
    |> Seq.iter (Format.printf "%d; ")
    ; [%expect{| 0; 1; 2; 3; 4; |}]

let%expect_test "infinite tuple walk" = nat_pairs
  |> to_seq |> Seq.take 10 
  |> Seq.iter (fun (x,y) -> Format.printf "(%d,%d); " x y)
  ; [%expect{| (0,0); (1,0); (1,1); (2,0); (2,1); (2,2); (3,0); (3,1); (3,2); (3,3); |}]

let%expect_test "1 ++ 2"  = (return 1 ++ return 2)
  |> to_seq
  |> Seq.iter (Printf.printf "%d; ")
  ;[%expect{| 1; 2; |}]
  
let%expect_test "defer (1 ++ 2)"  = defer (fun () -> (return 1 ++ return 2))
  |> to_seq
  |> Seq.iter (Printf.printf "%d; ")
  ;[%expect{| 1; 2; |}]

let%expect_test "no_dup" =
  (
    let* num1 = int_range 1 5 in
    let* num2 = int_range 1 5 in
    return (num1 * num2)
  )
  |> no_dup Int.compare
  |> to_seq
  |> Seq.iter (Printf.printf "%d; ")
  ; [%expect{| 1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 15; 16; 20; 25; |}]

let%expect_test "breadth_search" =
[4; 10] 
|> List.map (fun limit () -> Float.of_int limit)
|> List.iter (fun limit ->
  (
    let* num1 = int_range 1 5 in
    let* num2 = int_range 1 5 in
    return (num1 , num2)
  )
  |> to_seq ~search:(breadth_search ~limit)
  |> Seq.iter (fun (x, y) -> (Printf.printf "(%d, %d) " x y))
  ; Printf.printf("\n")
)
; [%expect{|
  (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)
  (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) |}]

let rec pp_decision_tree pp_element out = 
  Format.(function
  | Result r ->
      fprintf out "@\n";
      fprintf out "@[%a@]" pp_element r
  | Fork choices ->
      if StaQue.is_empty choices then (
        fprintf out "@\n";
        fprintf out "FAIL"
      ) else if StaQue.size choices = 1 then (
        fprintf out "@\n";
        pp_decision_tree pp_element out (StaQue.get 0 choices)
      ) else (
        fprintf out "@\n@[<v 2>choices";
        let elements = ref choices in
        while not (StaQue.is_empty !elements) do
          StaQue.pop !elements |> function
          | None -> ()
          | Some (top, rest) ->
              pp_decision_tree pp_element out top;
              elements := rest
        done;
        fprintf out "@]"
      )
  | Lazy producer -> pp_decision_tree pp_element out (producer ())
  )

let%expect_test "pp_decisions_tree" = begin
  let sums = (
    let* n1 = int_range 1 3 in 
    let* n2 = int_range 1 3 in
    let sum = n1+n2 in 
      (* if sum mod 2==0 then *)
        return (Printf.sprintf "%d + %d = %d" n1 n2 sum)
      (* else
        empty *)
  ) in
  let pp = pp_decision_tree (Format.pp_print_string) Format.std_formatter in
  pp sums
  ; [%expect{|
      choices
        choices
          1 + 1 = 2
          choices
            1 + 2 = 3
            choices
              1 + 3 = 4
              FAIL
        choices
          choices
            2 + 1 = 3
            choices
              2 + 2 = 4
              choices
                2 + 3 = 5
                FAIL
          choices
            choices
              3 + 1 = 4
              choices
                3 + 2 = 5
                choices
                  3 + 3 = 6
                  FAIL
            FAIL
      |}]
end

let%expect_test "pp_decisions_tree_of_list_ints" = begin
  let sums =
   let* n1 = of_list [1; 2; 3] in
   let* n2 = of_list [1; 2; 3] in
   return (Printf.sprintf "%d + %d = %d" n1 n2 (n1 + n2))
  in
  let pp = pp_decision_tree Format.pp_print_string Format.std_formatter in
  pp sums;
  Format.pp_print_flush Format.std_formatter (); (* ensure output is flushed *)
  [%expect{|
    choices
      choices
        1 + 1 = 2
        1 + 2 = 3
        1 + 3 = 4
      choices
        2 + 1 = 3
        2 + 2 = 4
        2 + 3 = 5
      choices
        3 + 1 = 4
        3 + 2 = 5
        3 + 3 = 6
    |}]
end

type 'a node_view =
  | Result of 'a
  | Fork of 'a t list
  | Fail

let rec inspect (space : 'a t) : 'a node_view =
  match space with
  | Result x -> Result x
  | Fork choices ->
      let choices_list = StaQue.to_list choices in
      begin match choices_list with
      | [] -> Fail
      | [single] -> inspect single
      | _ -> Fork choices_list
      end
  | Lazy f -> inspect (f ())