package knights_tour
Solves the 'Knights Tour' and various 'Poyomino' puzzles
Install
dune-project
Dependency
Authors
Maintainers
Sources
knights_tour-0.0.6.tbz
sha256=770624ae4e35d5a58188a1f25e16730d186df8bc4397827fe9a798ea5ca574e3
sha512=b6c7b2473ddf321afaac6b668f9c6820fb8cc872abc494b69edfdff4101c6b660645837b04801e2917c38dd9f19f79bb0a7b029d59a58ddf1e3a235659bab099
doc/src/knights_tour.searchspace/searchspace.ml.html
Source file searchspace.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
module StaQue = Collections.Treequence type 'a t = | Result of 'a | Fork of 'a t StaQue.t | Lazy of (unit -> 'a t) let return x = Result x let alt2 x y = Fork StaQue.( push x (singleton y) ) let alt choices = Fork (StaQue.of_list choices) let empty = Fork StaQue.empty let rec bind a f = match a with | Result a -> Lazy (fun () -> (f a)) | Fork choices -> Fork ( choices |> StaQue.map (fun choice -> bind choice f) ) | Lazy l -> Lazy (fun () -> bind (l ()) f) let map f m = bind m (fun a -> return (f a)) let filter pred m = bind m (fun q -> if pred q then return q else empty) let (|=>) = bind let (|->) m f = map f m let (|?>) m p = filter p m let (++) = alt2 let defer l = Lazy l let rec range from whle step = defer (fun () -> ( if whle from then return from ++ range (step from) whle step else empty )) let int_range lo hi = range lo ((>=) hi) ((+) 1) let rec search = function | Result r -> Some (r, empty) | Fork choices -> (match StaQue.pop choices with | None -> None | Some (first, rest) -> (match search first with | None -> search (Fork rest) | Some (found, first_rest) -> Some (found, alt2 first_rest (Fork rest)) ) ) | Lazy l -> l () |> search type 'a search_fun = 'a t -> ('a * 'a t) option let cached_for ~iterations getter = let counter = ref 0 in let cache = ref None in fun () -> begin counter := !counter + 1; if !counter >= iterations || !cache = None then begin counter := 0; cache := Some (getter ()) end; !cache |> Option.get end let memfree = cached_for ~iterations:10000 Memfree.mem_free_ratio (** [scale_to_inifinity x] goes from 0 to infinity as x goes from 0 to 1 *) let scale_to_inifinity x = let divider = 1.0 -. x in if divider <= 0.0 then Float.infinity else (x /. divider) let limit_on_low_memory ~max_memory_ratio () = let free_ratio = memfree () in let used_ratio = 1.0 -. free_ratio in scale_to_inifinity (used_ratio /. max_memory_ratio) let rec breadth_search_aux limit stackmon steps stack = let steps = ref (steps + 1) in let pop worklist = let lmt = Float.of_int (StaQue.size worklist) *. limit () in if Float.of_int !steps > lmt then ( (* broaden search by choosing the oldest choice point to explore further *) stackmon "pop_end" !steps worklist; steps := 0; StaQue.pop_end worklist ) else ( (* narrow search by choosing the newest choice point to explore further (which tends to follow a single 'track/path/subtree' of choices until it is 'exhausted' / reaches a conclusion) *) stackmon "pop" !steps worklist; StaQue.pop worklist ) in match pop stack with | None -> None | Some (item, stack) -> (match item with | Result x -> Some (x, Fork stack) | Fork choices -> StaQue.append choices stack |> breadth_search_aux limit stackmon !steps | Lazy producer -> StaQue.push (producer ()) stack |> breadth_search_aux limit stackmon !steps ) let default_limit () = 1.0 let breadth_search ?(limit=default_limit) ?(stack_mon=fun _ _ _ -> ()) space = breadth_search_aux limit stack_mon 0 (StaQue.singleton space) let rec to_seq ?(search=search) space () = match search space with | None -> Seq.Nil | Some (fst,rst) -> Seq.Cons (fst, to_seq ~search rst) let of_list choices = List.map return choices |> alt let rec ints_from start = return start ++ defer (fun () -> (ints_from (1 + start))) let nats = ints_from 0 let rec of_seq alts = Lazy (fun () -> match Seq.uncons alts with | None -> empty | Some(first, rest) -> return first ++ of_seq rest ) let ( let* ) = bind let nat_pairs = let* x = nats in let* y = int_range 0 x in return (x,y) let set_of_compare (type a) (compare : a -> a -> int) = let module Comp : Set.OrderedType with type t = a = struct type t = a let compare = compare end in let module SetOf = Set.Make(Comp) in (module SetOf : Set.S with type elt = a) let no_dup (type a) (compare : a -> a -> int) inputs = let module InputSet = (val set_of_compare compare : Set.S with type elt = a) in inputs |> to_seq |> InputSet.of_seq |> InputSet.to_seq |> of_seq let%expect_test "range 1..4" = let searchspace = int_range 1 4 in to_seq searchspace |> Seq.iter (fun result -> Format.printf "%d; " result ) ; [%expect{| 1; 2; 3; 4; |}] let%expect_test "sum of two ranges" = ( let numbers = int_range 1 4 in let* x:int = numbers in let* y:int = numbers in return (Format.sprintf "%d + %d = %d" x y (x + y)) ) |> to_seq |> Seq.iter print_endline ; [%expect{| 1 + 1 = 2 1 + 2 = 3 1 + 3 = 4 1 + 4 = 5 2 + 1 = 3 2 + 2 = 4 2 + 3 = 5 2 + 4 = 6 3 + 1 = 4 3 + 2 = 5 3 + 3 = 6 3 + 4 = 7 4 + 1 = 5 4 + 2 = 6 4 + 3 = 7 4 + 4 = 8 |}] let%expect_test "find some results in infinite searchspace" = nats |> to_seq |> Seq.take 5 |> Seq.iter (Format.printf "%d; ") ; [%expect{| 0; 1; 2; 3; 4; |}] let%expect_test "infinite tuple walk" = nat_pairs |> to_seq |> Seq.take 10 |> Seq.iter (fun (x,y) -> Format.printf "(%d,%d); " x y) ; [%expect{| (0,0); (1,0); (1,1); (2,0); (2,1); (2,2); (3,0); (3,1); (3,2); (3,3); |}] let%expect_test "1 ++ 2" = (return 1 ++ return 2) |> to_seq |> Seq.iter (Printf.printf "%d; ") ;[%expect{| 1; 2; |}] let%expect_test "defer (1 ++ 2)" = defer (fun () -> (return 1 ++ return 2)) |> to_seq |> Seq.iter (Printf.printf "%d; ") ;[%expect{| 1; 2; |}] let%expect_test "no_dup" = ( let* num1 = int_range 1 5 in let* num2 = int_range 1 5 in return (num1 * num2) ) |> no_dup Int.compare |> to_seq |> Seq.iter (Printf.printf "%d; ") ; [%expect{| 1; 2; 3; 4; 5; 6; 8; 9; 10; 12; 15; 16; 20; 25; |}] let%expect_test "breadth_search" = [4; 10] |> List.map (fun limit () -> Float.of_int limit) |> List.iter (fun limit -> ( let* num1 = int_range 1 5 in let* num2 = int_range 1 5 in return (num1 , num2) ) |> to_seq ~search:(breadth_search ~limit) |> Seq.iter (fun (x, y) -> (Printf.printf "(%d, %d) " x y)) ; Printf.printf("\n") ) ; [%expect{| (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) |}] let rec pp_decision_tree pp_element out = Format.(function | Result r -> fprintf out "@\n"; fprintf out "@[%a@]" pp_element r | Fork choices -> if StaQue.is_empty choices then ( fprintf out "@\n"; fprintf out "FAIL" ) else if StaQue.size choices = 1 then ( fprintf out "@\n"; pp_decision_tree pp_element out (StaQue.get 0 choices) ) else ( fprintf out "@\n@[<v 2>choices"; let elements = ref choices in while not (StaQue.is_empty !elements) do StaQue.pop !elements |> function | None -> () | Some (top, rest) -> pp_decision_tree pp_element out top; elements := rest done; fprintf out "@]" ) | Lazy producer -> pp_decision_tree pp_element out (producer ()) ) let%expect_test "pp_decisions_tree" = begin let sums = ( let* n1 = int_range 1 3 in let* n2 = int_range 1 3 in let sum = n1+n2 in (* if sum mod 2==0 then *) return (Printf.sprintf "%d + %d = %d" n1 n2 sum) (* else empty *) ) in let pp = pp_decision_tree (Format.pp_print_string) Format.std_formatter in pp sums ; [%expect{| choices choices 1 + 1 = 2 choices 1 + 2 = 3 choices 1 + 3 = 4 FAIL choices choices 2 + 1 = 3 choices 2 + 2 = 4 choices 2 + 3 = 5 FAIL choices choices 3 + 1 = 4 choices 3 + 2 = 5 choices 3 + 3 = 6 FAIL FAIL |}] end let%expect_test "pp_decisions_tree_of_list_ints" = begin let sums = let* n1 = of_list [1; 2; 3] in let* n2 = of_list [1; 2; 3] in return (Printf.sprintf "%d + %d = %d" n1 n2 (n1 + n2)) in let pp = pp_decision_tree Format.pp_print_string Format.std_formatter in pp sums; Format.pp_print_flush Format.std_formatter (); (* ensure output is flushed *) [%expect{| choices choices 1 + 1 = 2 1 + 2 = 3 1 + 3 = 4 choices 2 + 1 = 3 2 + 2 = 4 2 + 3 = 5 choices 3 + 1 = 4 3 + 2 = 5 3 + 3 = 6 |}] end type 'a node_view = | Result of 'a | Fork of 'a t list | Fail let rec inspect (space : 'a t) : 'a node_view = match space with | Result x -> Result x | Fork choices -> let choices_list = StaQue.to_list choices in begin match choices_list with | [] -> Fail | [single] -> inspect single | _ -> Fork choices_list end | Lazy f -> inspect (f ())
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>