package kaun
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Flax-inspired neural network library for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha2.tbz
sha256=93abc49d075a1754442ccf495645bc4fdc83e4c66391ec8aca8fa15d2b4f44d2
sha512=5eb958c51f30ae46abded4c96f48d1825f79c7ce03f975f9a6237cdfed0d62c0b4a0774296694def391573d849d1f869919c49008acffca95946b818ad325f6f
doc/src/kaun.models/bert.ml.html
Source file bert.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451open Rune (* Configuration *) type config = { vocab_size : int; hidden_size : int; num_hidden_layers : int; num_attention_heads : int; intermediate_size : int; hidden_act : [ `gelu | `relu | `swish | `gelu_new ]; hidden_dropout_prob : float; attention_probs_dropout_prob : float; max_position_embeddings : int; type_vocab_size : int; layer_norm_eps : float; pad_token_id : int; position_embedding_type : [ `absolute | `relative ]; use_cache : bool; classifier_dropout : float option; } let default_config = { vocab_size = 30522; hidden_size = 768; num_hidden_layers = 12; num_attention_heads = 12; intermediate_size = 3072; hidden_act = `gelu; hidden_dropout_prob = 0.1; attention_probs_dropout_prob = 0.1; max_position_embeddings = 512; type_vocab_size = 2; layer_norm_eps = 1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } let bert_base_uncased = default_config let bert_large_uncased = { default_config with hidden_size = 1024; num_hidden_layers = 24; num_attention_heads = 16; intermediate_size = 4096; } let bert_base_cased = default_config (* Same architecture, different tokenizer *) let bert_base_multilingual = { default_config with vocab_size = 105879; (* Larger vocabulary for multilingual *) } (* Move inputs type definition before Tokenizer *) type inputs = { input_ids : (int32, int32_elt) Rune.t; attention_mask : (int32, int32_elt) Rune.t; token_type_ids : (int32, int32_elt) Rune.t option; position_ids : (int32, int32_elt) Rune.t option; } module Tokenizer = struct (* Simple BERT WordPiece tokenizer implementation *) type t = { vocab : (string, int) Hashtbl.t; inv_vocab : (int, string) Hashtbl.t; unk_token_id : int; cls_token_id : int; sep_token_id : int; pad_token_id : int; max_input_chars_per_word : int; } let download_vocab_file model_id = (* Download vocab file from HuggingFace if not present *) let vocab_cache = Nx_io.Cache_dir.get_path_in_cache ~scope:[ "models"; "bert" ] "vocab" in let vocab_file = Filename.concat vocab_cache (model_id ^ "-vocab.txt") in (* Create cache directory if it doesn't exist *) if not (Sys.file_exists vocab_cache) then Sys.command (Printf.sprintf "mkdir -p %s" vocab_cache) |> ignore; (* Download if file doesn't exist *) if not (Sys.file_exists vocab_file) then ( Printf.printf "Downloading vocab file for %s...\n%!" model_id; let url = Printf.sprintf "https://huggingface.co/%s/resolve/main/vocab.txt" model_id in let cmd = Printf.sprintf "curl -L -o %s %s 2>/dev/null || wget -O %s %s 2>/dev/null" vocab_file url vocab_file url in let exit_code = Sys.command cmd in if exit_code <> 0 then failwith (Printf.sprintf "Failed to download vocab file for %s" model_id)); vocab_file let load_vocab vocab_file = let vocab = Hashtbl.create 30000 in let inv_vocab = Hashtbl.create 30000 in let ic = open_in vocab_file in let idx = ref 0 in (try while true do let line = input_line ic in let token = String.trim line in if String.length token > 0 then ( Hashtbl.add vocab token !idx; Hashtbl.add inv_vocab !idx token; incr idx) done with End_of_file -> ()); close_in ic; (vocab, inv_vocab) let create ?vocab_file ?model_id () = (* Either provide a vocab_file path or a model_id to download from *) let vocab_file = match (vocab_file, model_id) with | Some file, _ -> file | None, Some id -> download_vocab_file id | None, None -> download_vocab_file "bert-base-uncased" (* Default *) in let vocab, inv_vocab = load_vocab vocab_file in { vocab; inv_vocab; unk_token_id = 100; (* [UNK] is at index 100 in BERT vocab *) cls_token_id = 101; (* [CLS] *) sep_token_id = 102; (* [SEP] *) pad_token_id = 0; (* [PAD] *) max_input_chars_per_word = 100; } (* Basic tokenization: lowercase and split on whitespace/punctuation *) let basic_tokenize text = let text = String.lowercase_ascii text in let tokens = ref [] in let current = Buffer.create 16 in String.iter (fun c -> match c with | 'a' .. 'z' | '0' .. '9' -> Buffer.add_char current c | _ -> if Buffer.length current > 0 then ( tokens := Buffer.contents current :: !tokens; Buffer.clear current); (* Don't add whitespace as tokens *) if c <> ' ' && c <> '\t' && c <> '\n' && c <> '\r' then tokens := String.make 1 c :: !tokens) text; if Buffer.length current > 0 then tokens := Buffer.contents current :: !tokens; List.rev !tokens (* WordPiece tokenization on a single word *) let wordpiece_tokenize_word t word = let n = String.length word in if n > t.max_input_chars_per_word then [ t.unk_token_id ] else let output = ref [] in let start = ref 0 in while !start < n do let end_idx = ref n in let found = ref false in while !start < !end_idx && not !found do let substr = if !start > 0 then "##" ^ String.sub word !start (!end_idx - !start) else String.sub word !start (!end_idx - !start) in match Hashtbl.find_opt t.vocab substr with | Some token_id -> output := token_id :: !output; found := true; start := !end_idx | None -> decr end_idx done; if not !found then ( output := [ t.unk_token_id ]; start := n (* Exit loop *)) done; List.rev !output let encode_to_array t text = let basic_tokens = basic_tokenize text in let token_ids = ref [ t.cls_token_id ] in List.iter (fun word -> let word_tokens = wordpiece_tokenize_word t word in token_ids := !token_ids @ word_tokens) basic_tokens; token_ids := !token_ids @ [ t.sep_token_id ]; Array.of_list !token_ids let encode t text = let token_ids = encode_to_array t text in let seq_len = Array.length token_ids in (* Convert to tensors *) let input_ids = Rune.create Int32 [| 1; seq_len |] (Array.map Int32.of_int token_ids) in let attention_mask = Rune.ones Int32 [| 1; seq_len |] in (* Return inputs record *) { input_ids; attention_mask; token_type_ids = None; position_ids = None } let encode_batch t ?(max_length = 512) ?(padding = true) texts = let encoded = List.map (encode_to_array t) texts in (* Find max length or use specified max_length *) let actual_max = if padding then max_length else List.fold_left (fun acc arr -> Int.max acc (Array.length arr)) 0 encoded in (* Pad sequences *) let padded = List.map (fun arr -> let len = Array.length arr in if len >= actual_max then Array.sub arr 0 actual_max else Array.append arr (Array.make (actual_max - len) t.pad_token_id)) encoded in (* Convert to tensor *) let batch_size = List.length padded in let flat_data = Array.concat padded in (* Create Nx tensor with int values *) let nx_tensor = let data = Array.map Int32.of_int flat_data in Nx.create Int32 [| batch_size; max_length |] data in (* Convert to Rune tensor *) Rune.of_nx nx_tensor let decode t token_ids = let tokens = ref [] in Array.iter (fun id -> if id <> t.cls_token_id && id <> t.sep_token_id && id <> t.pad_token_id then match Hashtbl.find_opt t.inv_vocab id with | Some token -> (* Remove ## prefix for subword tokens *) let token = if String.length token > 2 && String.sub token 0 2 = "##" then String.sub token 2 (String.length token - 2) else token ^ " " (* Add space after whole words *) in tokens := token :: !tokens | None -> ()) token_ids; String.concat "" (List.rev !tokens) |> String.trim let create_wordpiece ?vocab_file ?model_id () = create ?vocab_file ?model_id () end (* Use Ptree.Dict helpers for dict operations *) let embeddings ~config () = let open Kaun.Layer in (* BERT embeddings: token + position + token_type *) (* We'll create a custom module that combines them *) let token_embeddings = embedding ~vocab_size:config.vocab_size ~embed_dim:config.hidden_size ~scale:false () in let position_embeddings = embedding ~vocab_size:config.max_position_embeddings ~embed_dim:config.hidden_size ~scale:false () in let token_type_embeddings = embedding ~vocab_size:config.type_vocab_size ~embed_dim:config.hidden_size ~scale:false () in let layer_norm = layer_norm ~dim:config.hidden_size ~eps:config.layer_norm_eps () in let dropout = dropout ~rate:config.hidden_dropout_prob () in (* Custom module that applies all embeddings and sums them *) { Kaun.init = (fun ~rngs ~dtype -> let keys = Rune.Rng.split ~n:5 rngs in Kaun.Ptree.dict [ ("token_embeddings", token_embeddings.init ~rngs:keys.(0) ~dtype); ( "position_embeddings", position_embeddings.init ~rngs:keys.(1) ~dtype ); ( "token_type_embeddings", token_type_embeddings.init ~rngs:keys.(2) ~dtype ); ("layer_norm", layer_norm.init ~rngs:keys.(3) ~dtype); ("dropout", dropout.init ~rngs:keys.(4) ~dtype); ]); Kaun.apply = (fun params ~training ?rngs x -> let input_ids = Rune.cast Rune.int32 x in let dtype = Rune.dtype x in let token_embeddings_table = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "token_embeddings.embedding") params dtype in let position_embeddings_table = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "position_embeddings.embedding") params dtype in let token_type_embeddings_table = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "token_type_embeddings.embedding") params dtype in let lookup_embeddings embedding_table indices = let batch_size = (Rune.shape indices).(0) in let seq_len = (Rune.shape indices).(1) in let embed_dim = (Rune.shape embedding_table).(1) in let indices_flat = Rune.reshape [| batch_size * seq_len |] indices in let gathered = Rune.take ~axis:0 indices_flat embedding_table in Rune.reshape [| batch_size; seq_len; embed_dim |] gathered in let token_embeds = lookup_embeddings token_embeddings_table input_ids in let seq_len = (Rune.shape input_ids).(Array.length (Rune.shape input_ids) - 1) in let batch_size = (Rune.shape input_ids).(0) in let position_ids = let pos_ids = Rune.zeros Rune.int32 [| batch_size; seq_len |] in for b = 0 to batch_size - 1 do for s = 0 to seq_len - 1 do Rune.set [ b; s ] pos_ids (Rune.scalar Rune.int32 (Int32.of_int s)) done done; pos_ids in let position_embeds = lookup_embeddings position_embeddings_table position_ids in let token_type_ids = Rune.zeros Rune.int32 (Rune.shape input_ids) in let token_type_embeds = lookup_embeddings token_type_embeddings_table token_type_ids in let embeddings = Rune.add token_embeds (Rune.add position_embeds token_type_embeds) in let ln_params = match Kaun.Ptree.get ~path:(Kaun.Ptree.Path.of_string "layer_norm") params with | Some p -> p | None -> Kaun.Ptree.Dict [] in let embeddings = layer_norm.apply ln_params ~training ?rngs embeddings in let dropout_params = match Kaun.Ptree.get ~path:(Kaun.Ptree.Path.of_string "dropout") params with | Some p -> p | None -> Kaun.Ptree.List [] in let embeddings = dropout.apply dropout_params ~training ?rngs embeddings in embeddings); } let pooler ~ () = (* Create a module that extracts CLS token and applies dense + tanh *) { Kaun.init = (fun ~rngs ~dtype -> (* Initialize dense layer weights *) let key = Rune.Rng.to_int rngs in let init_fn = (Kaun.Initializers.normal ~stddev:0.02 ()).f in let dense_weight = init_fn key [| hidden_size; hidden_size |] dtype in let dense_bias = Rune.zeros dtype [| hidden_size |] in Kaun.Ptree.dict [ ("dense_weight", Kaun.Ptree.tensor dense_weight); ("dense_bias", Kaun.Ptree.tensor dense_bias); ]); Kaun.apply = (fun params ~training:_ ?rngs:_ x -> let open Rune in (* Extract CLS token: hidden_states[:, 0, :] *) let cls_token = slice [ A; I 0; A ] x in let dtype = Rune.dtype cls_token in let dense_weight = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "dense_weight") params dtype in let dense_bias = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "dense_bias") params dtype in let pooled = add (matmul cls_token dense_weight) dense_bias in (* Apply tanh activation *) tanh pooled); } (* Main Model *) type 'a bert = { model : Kaun.Layer.module_; params : Kaun.Ptree.t; config : config; dtype : (float, 'a) Rune.dtype; } type 'a output = { last_hidden_state : (float, 'a) Rune.t; pooler_output : (float, 'a) Rune.t option; hidden_states : (float, 'a) Rune.t list option; attentions : (float, 'a) Rune.t list option; } module Rng_stream = struct type t = Rune.Rng.key option ref let create key = ref key let pop stream = match !stream with | None -> None | Some key -> let splits = Rune.Rng.split key in stream := Some splits.(1); Some splits.(0) let require stream context = match pop stream with | Some key -> key | None -> failwith (Printf.sprintf "BERT.%s requires RNG when training and dropout > 0" context) end let apply_transformer_layer ~config ~context ~params ~ ~training ~(rng_stream : Rng_stream.t) ?attention_mask () = let dtype = Rune.dtype hidden_states in let fields = match params with | Kaun.Ptree.Dict fields -> fields | _ -> failwith (Printf.sprintf "%s: transformer layer params must be a dict" context) in let get name = Kaun.Ptree.Dict.get_tensor_exn fields ~name dtype in let get_opt name = Kaun.Ptree.Dict.get_tensor fields ~name dtype in let = config.hidden_size in let num_heads = config.num_attention_heads in if hidden_size mod num_heads <> 0 then invalid_arg (Printf.sprintf "%s: hidden_size (%d) not divisible by num_attention_heads (%d)" context hidden_size num_heads); let head_dim = hidden_size / num_heads in let apply_linear weight bias input = let projected = Rune.matmul input weight in match bias with Some b -> Rune.add projected b | None -> projected in let reshape_heads heads tensor = let tensor = Rune.contiguous tensor in let shape = Rune.shape tensor in if Array.length shape <> 3 then invalid_arg (Printf.sprintf "%s: expected rank-3 projection" context); let projected_dim = shape.(2) in if projected_dim <> heads * head_dim then invalid_arg (Printf.sprintf "%s: projection mismatch (got %d, expected %d)" context projected_dim (heads * head_dim)); let reshaped = Rune.reshape [| shape.(0); shape.(1); heads; head_dim |] tensor in Rune.transpose reshaped ~axes:[ 0; 2; 1; 3 ] in let q = apply_linear (get "q_weight") (get_opt "q_bias") hidden_states in let k = apply_linear (get "k_weight") (get_opt "k_bias") hidden_states in let v = apply_linear (get "v_weight") (get_opt "v_bias") hidden_states in let q_heads = reshape_heads num_heads q in let k_heads = reshape_heads num_heads k in let v_heads = reshape_heads num_heads v in let batch, seq_len = let shape = Rune.shape hidden_states in (shape.(0), shape.(1)) in let attn_dropout_rate = if training then config.attention_probs_dropout_prob else 0.0 in let attn_seed = if attn_dropout_rate > 0.0 then Some (Rune.Rng.to_int (Rng_stream.require rng_stream (context ^ ".attention_dropout"))) else None in let attention = Rune.dot_product_attention ?attention_mask ~scale:(1.0 /. Stdlib.sqrt (float_of_int head_dim)) ?dropout_rate: (if attn_dropout_rate > 0.0 then Some attn_dropout_rate else None) ?dropout_seed:attn_seed ~is_causal:false q_heads k_heads v_heads in let attention = attention |> Rune.transpose ~axes:[ 0; 2; 1; 3 ] |> Rune.contiguous |> Rune.reshape [| batch; seq_len; hidden_size |] in let attn_out = Rune.matmul attention (get "attn_out_weight") |> fun x -> match get_opt "attn_out_bias" with | Some bias -> Rune.add x bias | None -> x in let = if training then config.hidden_dropout_prob else 0.0 in let suffix tensor = if hidden_dropout_rate = 0.0 then tensor else let key = Rng_stream.require rng_stream (context ^ suffix) in Rune.dropout ~seed:(Rune.Rng.to_int key) ~rate:hidden_dropout_rate tensor in let attn_out = apply_hidden_dropout ".dropout_attn" attn_out in let residual = Rune.add hidden_states attn_out in let normed = Rune.layer_norm residual ~gamma:(get "attn_gamma") ~beta:(get "attn_beta") ~epsilon:config.layer_norm_eps in let intermediate = Rune.matmul normed (get "inter_weight") |> fun x -> match get_opt "inter_bias" with Some bias -> Rune.add x bias | None -> x in let inter_shape = Rune.shape intermediate in if inter_shape.(2) <> config.intermediate_size then failwith (Printf.sprintf "%s: intermediate_size mismatch (expected %d, got %d)" context config.intermediate_size inter_shape.(2)); let activated = match config.hidden_act with | `gelu | `gelu_new -> Kaun.Activations.gelu intermediate | `relu -> Kaun.Activations.relu intermediate | `swish -> Kaun.Activations.swish intermediate in let output = Rune.matmul activated (get "out_weight") |> fun x -> match get_opt "out_bias" with Some bias -> Rune.add x bias | None -> x in let output = apply_hidden_dropout ".dropout_ffn" output in let residual = Rune.add normed output in Rune.layer_norm residual ~gamma:(get "ffn_gamma") ~beta:(get "ffn_beta") ~epsilon:config.layer_norm_eps let transformer_layer_module ~config ~layer_index = let = config.hidden_size in let intermediate_size = config.intermediate_size in let context = Printf.sprintf "encoder[%d]" layer_index in { Kaun.init = (fun ~rngs ~dtype -> let keys = Rune.Rng.split ~n:10 rngs in let init_fn = (Kaun.Initializers.glorot_uniform ()).f in let zeros = (Kaun.Initializers.zeros ()).f in let q_weight = init_fn (Rune.Rng.to_int keys.(0)) [| hidden_size; hidden_size |] dtype in let k_weight = init_fn (Rune.Rng.to_int keys.(1)) [| hidden_size; hidden_size |] dtype in let v_weight = init_fn (Rune.Rng.to_int keys.(2)) [| hidden_size; hidden_size |] dtype in let attn_out_weight = init_fn (Rune.Rng.to_int keys.(3)) [| hidden_size; hidden_size |] dtype in let inter_weight = init_fn (Rune.Rng.to_int keys.(4)) [| hidden_size; intermediate_size |] dtype in let out_weight = init_fn (Rune.Rng.to_int keys.(5)) [| intermediate_size; hidden_size |] dtype in let attn_gamma = Rune.ones dtype [| hidden_size |] in let attn_beta = Rune.zeros dtype [| hidden_size |] in let ffn_gamma = Rune.ones dtype [| hidden_size |] in let ffn_beta = Rune.zeros dtype [| hidden_size |] in let bias name shape = (name, Kaun.Ptree.tensor (zeros 0 shape dtype)) in Kaun.Ptree.dict [ ("q_weight", Kaun.Ptree.tensor q_weight); ("k_weight", Kaun.Ptree.tensor k_weight); ("v_weight", Kaun.Ptree.tensor v_weight); ("attn_out_weight", Kaun.Ptree.tensor attn_out_weight); ("inter_weight", Kaun.Ptree.tensor inter_weight); ("out_weight", Kaun.Ptree.tensor out_weight); ("attn_gamma", Kaun.Ptree.tensor attn_gamma); ("attn_beta", Kaun.Ptree.tensor attn_beta); ("ffn_gamma", Kaun.Ptree.tensor ffn_gamma); ("ffn_beta", Kaun.Ptree.tensor ffn_beta); bias "q_bias" [| hidden_size |]; bias "k_bias" [| hidden_size |]; bias "v_bias" [| hidden_size |]; bias "attn_out_bias" [| hidden_size |]; bias "inter_bias" [| intermediate_size |]; bias "out_bias" [| hidden_size |]; ]); Kaun.apply = (fun params ~training ?rngs -> let rng_stream = Rng_stream.create rngs in apply_transformer_layer ~config ~context ~params ~hidden_states ~training ~rng_stream ?attention_mask:None ()); } let create_bert_layers ~config ~add_pooling_layer = (* Build BERT as a sequential model *) let transformer_layers = List.init config.num_hidden_layers (fun idx -> transformer_layer_module ~config ~layer_index:idx) in let layers = [ (* Use the proper BERT embeddings module that combines token + position + segment *) embeddings ~config (); (* Transformer encoder stack *) Kaun.Layer.sequential transformer_layers; ] @ (* Optional pooler for [CLS] token *) if add_pooling_layer then [ pooler ~hidden_size:config.hidden_size () ] else [] in layers let create ?(config = default_config) ?(add_pooling_layer = true) () = let open Kaun.Layer in sequential (create_bert_layers ~config ~add_pooling_layer) let from_pretrained ?(model_id = "bert-base-uncased") ?revision ?cache_config ~dtype () = (* Load config and weights from HuggingFace, but handle BERT-specific conversion here *) let cache_config = Option.value cache_config ~default:Kaun_huggingface.Config.default in let revision = Option.value revision ~default:Kaun_huggingface.Latest in (* Load config JSON from HuggingFace *) let config_json = match Kaun_huggingface.load_config ~config:cache_config ~revision ~model_id () with | Cached json | Downloaded (json, _) -> json in (* Parse BERT-specific config *) let bert_config = let open Yojson.Safe.Util in { vocab_size = config_json |> member "vocab_size" |> to_int; hidden_size = config_json |> member "hidden_size" |> to_int; num_hidden_layers = config_json |> member "num_hidden_layers" |> to_int; num_attention_heads = config_json |> member "num_attention_heads" |> to_int; intermediate_size = config_json |> member "intermediate_size" |> to_int; hidden_act = (match config_json |> member "hidden_act" |> to_string_option with | Some "gelu" | Some "gelu_new" -> `gelu | Some "relu" -> `relu | Some "swish" | Some "silu" -> `swish | _ -> `gelu); hidden_dropout_prob = config_json |> member "hidden_dropout_prob" |> to_float_option |> Option.value ~default:0.1; attention_probs_dropout_prob = config_json |> member "attention_probs_dropout_prob" |> to_float_option |> Option.value ~default:0.1; max_position_embeddings = config_json |> member "max_position_embeddings" |> to_int; type_vocab_size = config_json |> member "type_vocab_size" |> to_int_option |> Option.value ~default:2; layer_norm_eps = config_json |> member "layer_norm_eps" |> to_float_option |> Option.value ~default:1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } in (* Load weights using HuggingFace infrastructure *) let hf_params = Kaun_huggingface.from_pretrained ~config:cache_config ~revision ~model_id () in (* Map HuggingFace parameter names to our expected structure *) let map_huggingface_to_kaun hf_params = (* First, flatten the nested HuggingFace structure to get dot-separated names *) let rec flatten_ptree prefix tree = match tree with | Kaun.Ptree.Tensor tensor -> [ (prefix, tensor) ] | Kaun.Ptree.List lst -> List.concat (List.mapi (fun i subtree -> flatten_ptree (prefix ^ "." ^ string_of_int i) subtree) lst) | Kaun.Ptree.Dict fields -> List.fold_left (fun acc (name, subtree) -> let new_prefix = if prefix = "" then name else prefix ^ "." ^ name in flatten_ptree new_prefix subtree @ acc) [] fields in (* Flatten the HuggingFace parameters *) let flat_params = flatten_ptree "" hf_params in (* Map flat HF names to Kaun sequential structure *) let embeddings_params = ref [] in let encoder_layers = ref [] in let pooler_params = ref [] in let set_embedding params key tensor = Kaun.Ptree.Dict.set key (Kaun.Ptree.dict [ ("embedding", Kaun.Ptree.Tensor tensor) ]) params in List.iter (fun (hf_name, tensor) -> (* Strip "bert." prefix if present *) let name = if String.starts_with ~prefix:"bert." hf_name then String.sub hf_name 5 (String.length hf_name - 5) else hf_name in (* Map based on the name structure *) match name with (* Embeddings *) | s when String.starts_with ~prefix:"embeddings.word_embeddings.weight" s -> embeddings_params := set_embedding !embeddings_params "token_embeddings" tensor | s when String.starts_with ~prefix:"embeddings.position_embeddings.weight" s -> embeddings_params := set_embedding !embeddings_params "position_embeddings" tensor | s when String.starts_with ~prefix:"embeddings.token_type_embeddings.weight" s -> embeddings_params := set_embedding !embeddings_params "token_type_embeddings" tensor | s when String.starts_with ~prefix:"embeddings.LayerNorm" s -> let ln_params = match List.assoc_opt "layer_norm" !embeddings_params with | Some (Kaun.Ptree.Dict r) -> r | _ -> [] in let field = if String.ends_with ~suffix:"weight" s then "gamma" else if String.ends_with ~suffix:"bias" s then "beta" else if String.ends_with ~suffix:"gamma" s then "gamma" else "beta" in let updated_ln = Kaun.Ptree.Dict.set field (Kaun.Ptree.Tensor tensor) ln_params in embeddings_params := Kaun.Ptree.Dict.set "layer_norm" (Kaun.Ptree.Dict updated_ln) !embeddings_params (* Encoder layers *) | s when String.starts_with ~prefix:"encoder.layer." s -> ( let rest = String.sub s 14 (String.length s - 14) in match String.split_on_char '.' rest with | layer_idx :: params -> let layer_idx_int = int_of_string layer_idx in let param_name = String.concat "." params in (* Map HF param names to Kaun param names *) (* HuggingFace stores weights transposed, so we need to transpose them *) let kaun_param, needs_transpose = match param_name with | "attention.self.query.weight" -> ("q_weight", true) | "attention.self.key.weight" -> ("k_weight", true) | "attention.self.value.weight" -> ("v_weight", true) | "attention.output.dense.weight" -> ("attn_out_weight", true) | "intermediate.dense.weight" -> ("inter_weight", true) | "output.dense.weight" -> ("out_weight", true) | "attention.self.query.bias" -> ("q_bias", false) | "attention.self.key.bias" -> ("k_bias", false) | "attention.self.value.bias" -> ("v_bias", false) | "attention.output.dense.bias" -> ("attn_out_bias", false) | "intermediate.dense.bias" -> ("inter_bias", false) | "output.dense.bias" -> ("out_bias", false) | "attention.output.LayerNorm.weight" -> ("attn_gamma", false) | "attention.output.LayerNorm.bias" -> ("attn_beta", false) | "output.LayerNorm.weight" -> ("ffn_gamma", false) | "output.LayerNorm.bias" -> ("ffn_beta", false) | "attention.output.LayerNorm.gamma" -> ("attn_gamma", false) | "attention.output.LayerNorm.beta" -> ("attn_beta", false) | "output.LayerNorm.gamma" -> ("ffn_gamma", false) | "output.LayerNorm.beta" -> ("ffn_beta", false) | _ -> (param_name, false) in (* Ensure we have enough layers *) while List.length !encoder_layers <= layer_idx_int do encoder_layers := !encoder_layers @ [ ref [] ] done; (* Add param to the appropriate layer *) let layer_params = List.nth !encoder_layers layer_idx_int in (* Transpose weight matrices if needed (HuggingFace stores them transposed) *) let final_tensor = if needs_transpose then match tensor with | Kaun.Ptree.P t -> Kaun.Ptree.P (Rune.transpose t ~axes:[ 1; 0 ]) else tensor in layer_params := Kaun.Ptree.Dict.set kaun_param (Kaun.Ptree.Tensor final_tensor) !layer_params | _ -> ()) (* Pooler *) | s when String.starts_with ~prefix:"pooler.dense.weight" s -> (* Transpose the pooler weight too (HuggingFace stores it transposed) *) let transposed_tensor = match tensor with | Kaun.Ptree.P t -> Kaun.Ptree.P (Rune.transpose t ~axes:[ 1; 0 ]) in pooler_params := Kaun.Ptree.Dict.set "dense_weight" (Kaun.Ptree.Tensor transposed_tensor) !pooler_params | s when String.starts_with ~prefix:"pooler.dense.bias" s -> pooler_params := Kaun.Ptree.Dict.set "dense_bias" (Kaun.Ptree.Tensor tensor) !pooler_params | _ -> () (* Ignore other parameters *)) flat_params; let ensure_embedding params key = match List.assoc_opt key params with | Some (Kaun.Ptree.Dict fields) -> if not (List.exists (fun (name, _) -> String.equal name "embedding") fields) then failwith (key ^ " missing embedding field") | Some _ -> failwith (key ^ " is not a dict") | None -> failwith (key ^ " missing") in ensure_embedding !embeddings_params "token_embeddings"; ensure_embedding !embeddings_params "position_embeddings"; ensure_embedding !embeddings_params "token_type_embeddings"; (* Build the final sequential structure *) let encoder_list = List.map (fun r -> Kaun.Ptree.Dict !r) !encoder_layers in (* Add dropout placeholder for embeddings *) embeddings_params := Kaun.Ptree.Dict.set "dropout" (Kaun.Ptree.List []) !embeddings_params; (* Create a structure with both encoder params and pooler params *) (* The encoder params are for the sequential model *) let encoder_params = Kaun.Ptree.List [ Kaun.Ptree.Dict !embeddings_params; Kaun.Ptree.List encoder_list ] in (* Return a record with both encoder and pooler params *) Kaun.Ptree.dict [ ("encoder", encoder_params); ("pooler", Kaun.Ptree.Dict !pooler_params); ] in let mapped_params = map_huggingface_to_kaun hf_params in (* Create the bert model structure without pooler since we handle it separately *) let model = create ~config:bert_config ~add_pooling_layer:false () in { model; params = mapped_params; config = bert_config; dtype } let forward bert inputs ?(training = false) ?( = false) ?(output_attentions = false) ?rngs () = let { params; config; dtype = target_dtype; _ } = bert in let { input_ids; attention_mask; token_type_ids; position_ids = _ } = inputs in let open Rune in let rng_stream = Rng_stream.create rngs in let = config.hidden_dropout_prob in let encoder_params = match Kaun.Ptree.get ~path:(Kaun.Ptree.Path.of_string "encoder") params with | Some p -> p | None -> failwith "forward: missing encoder params" in let embeddings_params, encoder_layers = match encoder_params with | Kaun.Ptree.List (embeddings :: Kaun.Ptree.List layer_params :: _rest) -> (embeddings, layer_params) | _ -> failwith "forward: unexpected encoder params structure" in let embeddings_module = embeddings ~config () in let float_input = cast target_dtype input_ids in let embedding_rng = if training && hidden_dropout > 0.0 then Some (Rng_stream.require rng_stream "embeddings") else None in let = embeddings_module.apply embeddings_params ~training ?rngs:embedding_rng float_input in let batch_size = (shape hidden_states).(0) in let seq_len = (shape hidden_states).(1) in let token_type_ids = match token_type_ids with | Some ids -> ids | None -> zeros int32 [| batch_size; seq_len |] in if (shape token_type_ids).(0) <> batch_size || (shape token_type_ids).(1) <> seq_len then invalid_arg "forward: token_type_ids must match [batch; seq_len]"; let num_heads = config.num_attention_heads in let attention_mask = let mask = Kaun.Attention.normalize_mask attention_mask in let shape_mask = shape mask in let prepared = match Array.length shape_mask with | 2 -> let batch_dim = shape_mask.(0) in let key_dim = shape_mask.(1) in if (batch_dim <> batch_size && batch_dim <> 1) || (key_dim <> seq_len && key_dim <> 1) then invalid_arg "forward: rank-2 attention mask must match [batch; seq_len]"; reshape [| batch_dim; 1; 1; key_dim |] mask | 3 -> let batch_dim = shape_mask.(0) in let query_dim = shape_mask.(1) in let key_dim = shape_mask.(2) in if (batch_dim <> batch_size && batch_dim <> 1) || (query_dim <> seq_len && query_dim <> 1) || (key_dim <> seq_len && key_dim <> 1) then invalid_arg "forward: rank-3 attention mask must match [batch; seq_q; seq_k]"; expand_dims [ 1 ] mask | 4 -> let batch_dim = shape_mask.(0) in let head_dim = shape_mask.(1) in let query_dim = shape_mask.(2) in let key_dim = shape_mask.(3) in if (batch_dim <> batch_size && batch_dim <> 1) || (head_dim <> num_heads && head_dim <> 1) || (query_dim <> seq_len && query_dim <> 1) || (key_dim <> seq_len && key_dim <> 1) then invalid_arg "forward: rank-4 attention mask must match [batch; num_heads; \ seq_q; seq_k]"; mask | _ -> invalid_arg "forward: attention mask rank must be 2, 3, or 4" in broadcast_to [| batch_size; num_heads; seq_len; seq_len |] prepared in let attention_mask = Some attention_mask in let rec apply_layers idx = function | [] -> hidden | params :: rest -> let = apply_transformer_layer ~config ~context:(Printf.sprintf "encoder[%d]" idx) ~params ~hidden_states:hidden ~training ~rng_stream ?attention_mask () in apply_layers hidden (idx + 1) rest in let = apply_layers hidden_states 0 encoder_layers in let = if output_hidden_states then Some [ last_hidden_state ] else None in let attentions = if output_attentions then None else None in let pooler_output = if Kaun.Ptree.mem ~path:(Kaun.Ptree.Path.of_string "pooler.dense_weight") params && Kaun.Ptree.mem ~path:(Kaun.Ptree.Path.of_string "pooler.dense_bias") params then let pooler_weight = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "pooler.dense_weight") params target_dtype in let pooler_bias = Kaun.Ptree.get_tensor_exn ~path:(Kaun.Ptree.Path.of_string "pooler.dense_bias") params target_dtype in let cls_token = slice [ A; I 0; A ] last_hidden_state in let pooled = add (matmul cls_token pooler_weight) pooler_bias in Some (tanh pooled) else None in { last_hidden_state; pooler_output; hidden_states; attentions } let bert_forward = forward let bert_create = create (* Task-Specific Heads *) module For_masked_lm = struct let create ?(config = default_config) () = let open Kaun.Layer in sequential [ (* BERT encoder *) create ~config ~add_pooling_layer:false (); (* MLM head: project back to vocabulary *) linear ~in_features:config.hidden_size ~out_features:config.hidden_size (); gelu (); layer_norm ~dim:config.hidden_size ~eps:config.layer_norm_eps (); linear ~in_features:config.hidden_size ~out_features:config.vocab_size (); ] let forward ~model ~params ~compute_dtype ~input_ids ?(config = default_config) ?attention_mask ?token_type_ids ?labels ~training ?rngs () = ignore model; let mask = match attention_mask with | Some mask -> mask | None -> Rune.ones Rune.int32 (Rune.shape input_ids) in let bert_params, head_params = match params with | Kaun.Ptree.List (bert_params :: head_params) -> (bert_params, head_params) | _ -> failwith "For_masked_lm.forward: invalid params structure" in let linear1_params, gelu_params, layer_norm_params, linear2_params = match head_params with | [ linear1; gelu_p; layer_norm_p; linear2 ] -> (linear1, gelu_p, layer_norm_p, linear2) | _ -> failwith "For_masked_lm.forward: expected linear/gelu/layer_norm/linear \ params" in let bert_module = bert_create ~config ~add_pooling_layer:false () in let bert = { model = bert_module; params = Kaun.Ptree.dict [ ("encoder", bert_params); ("pooler", Kaun.Ptree.Dict []) ]; config; dtype = compute_dtype; } in let inputs = { input_ids; attention_mask = mask; token_type_ids; position_ids = None } in let bert_output = bert_forward bert inputs ~training ?rngs () in let linear1 = Kaun.Layer.linear ~in_features:config.hidden_size ~out_features:config.hidden_size () in let gelu_layer = Kaun.Layer.gelu () in let layer_norm = Kaun.Layer.layer_norm ~dim:config.hidden_size ~eps:config.layer_norm_eps () in let linear2 = Kaun.Layer.linear ~in_features:config.hidden_size ~out_features:config.vocab_size () in let = Kaun.apply linear1 linear1_params ~training bert_output.last_hidden_state in let = Kaun.apply gelu_layer gelu_params ~training hidden in let = Kaun.apply layer_norm layer_norm_params ~training hidden in let logits = Kaun.apply linear2 linear2_params ~training hidden in let loss = match labels with | Some labels -> let batch_size = (shape logits).(0) in let seq_length = (shape logits).(1) in let vocab_size = (shape logits).(2) in let flat_logits = Rune.reshape [| batch_size * seq_length; vocab_size |] logits in let flat_labels = Rune.reshape [| batch_size * seq_length |] labels in Some (Kaun.Loss.softmax_cross_entropy_with_indices flat_logits flat_labels) | None -> None in (logits, loss) end module For_sequence_classification = struct let create ?(config = default_config) ~num_labels () = let open Kaun.Layer in sequential [ (* BERT encoder with pooler *) create ~config ~add_pooling_layer:true (); (* Classification head *) dropout ~rate: (Option.value config.classifier_dropout ~default:config.hidden_dropout_prob) (); linear ~in_features:config.hidden_size ~out_features:num_labels (); ] let forward ~model ~params ~compute_dtype ~input_ids ?(config = default_config) ?attention_mask ?token_type_ids ?labels ~training ?rngs () = ignore model; let mask = match attention_mask with | Some mask -> mask | None -> Rune.ones Rune.int32 (Rune.shape input_ids) in let bert_params, head_params = match params with | Kaun.Ptree.List [ bert_params; dropout_params; linear_params ] -> (bert_params, (dropout_params, linear_params)) | _ -> failwith "For_sequence_classification.forward: invalid params structure" in let dropout_params, linear_params = head_params in let bert_module = bert_create ~config ~add_pooling_layer:true () in let bert = { model = bert_module; params = Kaun.Ptree.dict [ ("encoder", bert_params); ("pooler", Kaun.Ptree.Dict []) ]; config; dtype = compute_dtype; } in let inputs = { input_ids; attention_mask = mask; token_type_ids; position_ids = None } in let bert_rng, head_rng = match rngs with | None -> (None, None) | Some key -> let splits = Rune.Rng.split key in (Some splits.(0), Some splits.(1)) in let bert_output = bert_forward bert inputs ~training ?rngs:bert_rng () in let pooled = match bert_output.pooler_output with | Some pooled -> pooled | None -> failwith "For_sequence_classification.forward: expected pooler output" in let dropout_rate = Option.value config.classifier_dropout ~default:config.hidden_dropout_prob in let dropout_layer = Kaun.Layer.dropout ~rate:dropout_rate () in let num_labels = match linear_params with | Kaun.Ptree.Dict fields -> let dtype = compute_dtype in let weight = Kaun.Ptree.Dict.get_tensor_exn fields ~name:"weight" dtype in (Rune.shape weight).(1) | _ -> failwith "For_sequence_classification.forward: linear params not a dict" in let linear = Kaun.Layer.linear ~in_features:config.hidden_size ~out_features:num_labels () in let dropped = Kaun.apply dropout_layer dropout_params ~training ?rngs:head_rng pooled in let logits = Kaun.apply linear linear_params ~training dropped in let loss = match labels with | Some labels -> Some (Kaun.Loss.softmax_cross_entropy_with_indices logits labels) | None -> None in (logits, loss) end module For_token_classification = struct let create ?(config = default_config) ~num_labels () = let open Kaun.Layer in sequential [ (* BERT encoder without pooler *) create ~config ~add_pooling_layer:false (); (* Token classification head *) dropout ~rate:config.hidden_dropout_prob (); linear ~in_features:config.hidden_size ~out_features:num_labels (); ] let forward ~model ~params ~compute_dtype ~input_ids ?(config = default_config) ?attention_mask ?token_type_ids ?labels ~training ?rngs () = ignore model; let mask = match attention_mask with | Some mask -> mask | None -> Rune.ones Rune.int32 (Rune.shape input_ids) in let bert_params, head_params = match params with | Kaun.Ptree.List [ bert_params; dropout_params; linear_params ] -> (bert_params, (dropout_params, linear_params)) | _ -> failwith "For_token_classification.forward: invalid params structure" in let dropout_params, linear_params = head_params in let bert_module = bert_create ~config ~add_pooling_layer:false () in let bert = { model = bert_module; params = Kaun.Ptree.dict [ ("encoder", bert_params); ("pooler", Kaun.Ptree.Dict []) ]; config; dtype = compute_dtype; } in let inputs = { input_ids; attention_mask = mask; token_type_ids; position_ids = None } in let bert_rng, head_rng = match rngs with | None -> (None, None) | Some key -> let splits = Rune.Rng.split key in (Some splits.(0), Some splits.(1)) in let bert_output = bert_forward bert inputs ~training ?rngs:bert_rng () in let dropout_layer = Kaun.Layer.dropout ~rate:config.hidden_dropout_prob () in let num_labels = match linear_params with | Kaun.Ptree.Dict fields -> let dtype = compute_dtype in let weight = Kaun.Ptree.Dict.get_tensor_exn fields ~name:"weight" dtype in (Rune.shape weight).(1) | _ -> failwith "For_token_classification.forward: linear params not a dict" in let linear = Kaun.Layer.linear ~in_features:config.hidden_size ~out_features:num_labels () in let = Kaun.apply dropout_layer dropout_params ~training ?rngs:head_rng bert_output.last_hidden_state in let logits = Kaun.apply linear linear_params ~training hidden in let loss = match labels with | Some labels -> let batch_size = (shape logits).(0) in let seq_length = (shape logits).(1) in let num_labels = (shape logits).(2) in let flat_logits = Rune.reshape [| batch_size * seq_length; num_labels |] logits in let flat_labels = Rune.reshape [| batch_size * seq_length |] labels in Some (Kaun.Loss.softmax_cross_entropy_with_indices flat_logits flat_labels) | None -> None in (logits, loss) end (* BERT-specific configurations *) let parse_bert_config json = (* Parse BERT-specific configuration from HuggingFace JSON *) let open Yojson.Safe.Util in { vocab_size = json |> member "vocab_size" |> to_int; hidden_size = json |> member "hidden_size" |> to_int; num_hidden_layers = json |> member "num_hidden_layers" |> to_int; num_attention_heads = json |> member "num_attention_heads" |> to_int; intermediate_size = json |> member "intermediate_size" |> to_int; hidden_act = (match json |> member "hidden_act" |> to_string_option with | Some "gelu" | Some "gelu_new" -> `gelu | Some "relu" -> `relu | Some "swish" | Some "silu" -> `swish | _ -> `gelu); hidden_dropout_prob = json |> member "hidden_dropout_prob" |> to_float_option |> Option.value ~default:0.1; attention_probs_dropout_prob = json |> member "attention_probs_dropout_prob" |> to_float_option |> Option.value ~default:0.1; max_position_embeddings = json |> member "max_position_embeddings" |> to_int; type_vocab_size = json |> member "type_vocab_size" |> to_int_option |> Option.value ~default:2; layer_norm_eps = json |> member "layer_norm_eps" |> to_float_option |> Option.value ~default:1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } (* Utilities *) let create_attention_mask (type a) ~(input_ids : (int32, int32_elt) Rune.t) ~pad_token_id ~(dtype : (float, a) dtype) : (float, a) Rune.t = (* Create mask where 1.0 for real tokens, 0.0 for padding *) let input_dtype = Rune.dtype input_ids in let pad_tensor = Rune.scalar input_dtype (Int32.of_int pad_token_id) in let mask = Rune.not_equal input_ids pad_tensor in (* Cast to the requested float dtype *) Rune.cast dtype mask let get_embeddings ~model:_ ~params:_ ~input_ids:_ ?attention_mask:_ ~layer_index:_ () = (* Would extract embeddings from specific layer *) failwith "get_embeddings not fully implemented" let num_parameters params = let tensors = Kaun.Ptree.flatten_with_paths params in List.fold_left (fun acc (_, tensor) -> match tensor with | Kaun.Ptree.P t -> acc + Array.fold_left ( * ) 1 (Rune.shape t)) 0 tensors let parameter_stats params = let total_params = num_parameters params in let total_bytes = total_params * 4 in (* Assuming float32 *) Printf.sprintf "BERT parameters: %d (%.2f MB)" total_params (float_of_int total_bytes /. 1024. /. 1024.) (* Common BERT model configurations *) let load_bert_base_uncased ~dtype () = from_pretrained ~model_id:"bert-base-uncased" ~dtype () let load_bert_large_uncased ~dtype () = from_pretrained ~model_id:"bert-large-uncased" ~dtype () let load_bert_base_cased ~dtype () = from_pretrained ~model_id:"bert-base-cased" ~dtype () let load_bert_base_multilingual_cased ~dtype () = from_pretrained ~model_id:"bert-base-multilingual-cased" ~dtype ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>