package jasmin
Compiler for High-Assurance and High-Speed Cryptography
Install
dune-project
Dependency
Authors
Maintainers
Sources
jasmin-compiler-v2025.06.1.tar.bz2
sha256=e92b42fa69da7c730b0c26dacf842a72b4febcaf4f2157a1dc18b3cce1f859fa
doc/src/jasmin.jasmin/toEC.ml.html
Source file toEC.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
open Utils open Wsize open Prog open PrintCommon module E = Expr type amodel = | ArrayOld | WArray | BArray let ws2bytes ws = (int_of_ws ws) / 8 module Scmp = struct type t = string let compare = compare end module Ss = Set.Make(Scmp) module Ms = Map.Make(Scmp) (* ------------------------------------------------------------------- *) (* Array theories in eclib *) type arraywords = { sizew: int; (* in bytes *) sizea: int; } type subarray = { sizes: int; sizeb: int; } type subarraydirect = { sizew: int; (* in bytes *) sizes: int; sizeb: int; } type subarraycast = { sizews: int; (* in bytes *) sizewb: int; (* in bytes *) sizes: int; sizeb: int; } type arrayaccesscast = { sizews: int; (* in bytes *) sizewb: int; (* in bytes *) sizeb: int; } type array_theory = | Array of int | WArray of int | ArrayWords of arraywords | SubArray of subarray | SubArrayDirect of subarraydirect | SubArrayCast of subarraycast | ArrayAccessCast of arrayaccesscast | ByteArray of int | SubByteArray of subarray module ATcmp = struct type t = array_theory let compare = compare end module Sarraytheory = Set.Make(ATcmp) (* ------------------------------------------------------------------- *) (* Easycrypt keywords (and extraction "pseudo-keywords") *) (* FIXME: generate this list automatically *) (* Adapted from EasyCrypt source file src/ecLexer.mll *) let ec_keyword = [ "admit" ; "admitted" ; "forall" ; "exists" ; "fun" ; "glob" ; "let" ; "in" ; "for" ; "var" ; "proc" ; "if" ; "is" ; "match" ; "then" ; "else" ; "elif" ; "match" ; "for" ; "while" ; "assert" ; "return" ; "res" ; "equiv" ; "hoare" ; "ehoare" ; "phoare" ; "islossless" ; "async" ; "try" ; "first" ; "last" ; "do" ; "expect" (* Lambda tactics *) ; "beta" ; "iota" ; "zeta" ; "eta" ; "logic" ; "delta" ; "simplify" ; "cbv" ; "congr" (* Logic tactics *) ; "change" ; "split" ; "left" ; "right" ; "case" ; "pose" ; "gen" ; "have" ; "suff" ; "elim" ; "exlim" ; "ecall" ; "clear" ; "wlog" (* Auto tactics *) ; "apply" ; "rewrite" ; "rwnormal" ; "subst" ; "progress" ; "trivial" ; "auto" (* Other tactics *) ; "idtac" ; "move" ; "modpath" ; "field" ; "fieldeq" ; "ring" ; "ringeq" ; "algebra" ; "exact" ; "assumption" ; "smt" ; "coq" ; "check" ; "edit" ; "fix" ; "by" ; "reflexivity" ; "done" ; "solve" (* PHL: tactics *) ; "replace" ; "transitivity" ; "symmetry" ; "seq" ; "wp" ; "sp" ; "sim" ; "skip" ; "call" ; "rcondt" ; "rcondf" ; "swap" ; "cfold" ; "rnd" ; "rndsem" ; "pr_bounded" ; "bypr" ; "byphoare" ; "byehoare" ; "byequiv" ; "byupto" ; "fel" ; "conseq" ; "exfalso" ; "inline" ; "outline" ; "interleave" ; "alias" ; "weakmem" ; "fission" ; "fusion" ; "unroll" ; "splitwhile" ; "kill" ; "eager" ; "axiom" ; "axiomatized" ; "lemma" ; "realize" ; "proof" ; "qed" ; "abort" ; "goal" ; "end" ; "from" ; "import" ; "export" ; "include" ; "local" ; "global" ; "declare" ; "hint" ; "module" ; "of" ; "const" ; "op" ; "pred" ; "inductive" ; "notation" ; "abbrev" ; "require" ; "theory" ; "abstract" ; "section" ; "subtype" ; "type" ; "class" ; "instance" ; "print" ; "search" ; "locate" ; "as" ; "Pr" ; "clone" ; "with" ; "rename" ; "prover" ; "timeout" ; "why3" ; "dump" ; "remove" ; "exit" ; "fail" ; "time" ; "undo" ; "debug" ; "pragma" ; "Top" ; "Self" ] let syscall_mod_arg = "SC" let syscall_mod_sig = "Syscall_t" let syscall_mod = "Syscall" let internal_keyword = [ "safe"; "leakages"; syscall_mod_arg; syscall_mod_sig; syscall_mod ] let keywords = Ss.union (Ss.of_list ec_keyword) (Ss.of_list internal_keyword) (* ------------------------------------------------------------------- *) (* Easycrypt very simplified (and incomplete) AST. *) type ec_op2 = | ArrayGet | Plus | Infix of string type ec_op3 = | Ternary | If | InORange type ec_ident = string list type ec_expr = | Econst of Z.t (* int. literal *) | Ebool of bool (* bool literal *) | Eident of ec_ident (* variable *) | Eapp of ec_expr * ec_expr list (* op. application *) | Efun1 of string * ec_expr (* fun s => expr *) | Eop2 of ec_op2 * ec_expr * ec_expr (* binary operator *) | Eop3 of ec_op3 * ec_expr * ec_expr * ec_expr (* ternary operator *) | Elist of ec_expr list (* list litteral *) | Etuple of ec_expr list (* tuple litteral *) type ec_lvalue = | LvIdent of ec_ident | LvArrItem of ec_ident * ec_expr type ec_lvalues = ec_lvalue list type ec_instr = | ESasgn of ec_lvalues * ec_expr | EScall of ec_lvalues * ec_ident * ec_expr list | ESsample of ec_lvalues * ec_expr | ESif of ec_expr * ec_stmt * ec_stmt | ESwhile of ec_expr * ec_stmt | ESreturn of ec_expr | EScomment of string (* comment line *) and ec_stmt = ec_instr list type ec_ty = string type ec_var = string * ec_ty type ec_fun_decl = { fname: string; args: (string * ec_ty) list; rtys: ec_ty list; } type ec_fun = { decl: ec_fun_decl; locals: (string * ec_ty) list; stmt: ec_stmt; } type ec_modty = string type ec_module_type = { name: ec_modty; funs: ec_fun_decl list; } type ec_module = { name: string; params: (string * ec_modty) list; ty: ec_modty option; vars: (string * string) list; funs: ec_fun list; } type ec_item = | IrequireImport of string list | Iimport of string list | IfromImport of string * (string list) | IfromRequireImport of string * (string list) | Iabbrev of string * ec_expr | ImoduleType of ec_module_type | Imodule of ec_module type ec_prog = ec_item list (* ------------------------------------------------------------------- *) (* env: state of extraction *) module type EnvT = sig type t val vars: t -> string Mv.t val pd: t -> Wsize.wsize val arch: t -> architecture val randombytes: t -> int list val set_fun: t -> ('a, 'b) func -> t val add_Array: t -> int -> unit val add_WArray: t -> int -> unit val add_ArrayWords: t -> int -> int -> unit val add_BArray: t -> int -> unit val add_SBArray: t -> subarray -> unit val add_SubArray: t -> int -> int -> unit val add_SubArrayDirect: t -> int -> int -> int -> unit val add_SubArrayCast: t -> int -> int -> int -> int -> unit val add_ArrayAccessCast: t -> int -> int -> int -> unit val add_randombytes: t -> int -> unit val add_ty: t -> int gty -> unit val add_jarray: t -> Wsize.wsize -> int -> unit val empty: architecture -> Wsize.wsize -> Sarraytheory.t ref -> t val create_name: t -> string -> string val array_theories: t -> Sarraytheory.t val get_funtype: t -> funname -> (ty list * ty list) val get_funname: t -> funname -> string val create_aux: t -> string -> ec_ty -> string val reuse_aux: t -> string -> ec_ty -> string val new_aux_range: t -> t val new_fun: t -> t val set_var: t -> var -> t val aux_vars: t -> (string * string) list end module Env: EnvT = struct module PTcmp = struct type t = string * ec_ty let compare = compare end module Mpty = Map.Make (PTcmp) type t = { arch: architecture; pd: Wsize.wsize; (* All names: functions, global variables, arguments, local variables, aux variables *) alls: Ss.t ref; (* All variables, excluding aux: global, argument, local variables *) vars: string Mv.t; funs: (string * (ty list * ty list)) Mf.t; array_theories: Sarraytheory.t ref; (* aux variables: intermediate variables introduced by extraction. aux variables have a prefix in their name that identifies their use (such as jasmin assignments, for loop bounds, intermediate leakage variables). - auxv: for each (prefix, type), the list of all aux (used for variable declaration). - count: number of currently live aux variables for each (prefix, type). *) auxv: string BatVect.t Mpty.t ref; mutable count: int Mpty.t; randombytes: Sint.t ref; } let vars env = env.vars let pd env = env.pd let arch env = env.arch let randombytes env = Sint.elements !(env.randombytes) let array_theories env = !(env.array_theories) let add_Array env n = env.array_theories := Sarraytheory.add (Array n) !(env.array_theories) let add_BArray env size = env.array_theories := Sarraytheory.add (ByteArray size) !(env.array_theories) let add_SBArray env (s:subarray) = add_BArray env s.sizeb; add_BArray env s.sizes; env.array_theories := Sarraytheory.add (SubByteArray s) !(env.array_theories) let add_WArray env n = env.array_theories := Sarraytheory.add (WArray n) !(env.array_theories) let add_ArrayWords env sizew sizea = add_Array env sizea; add_WArray env (sizew*sizea); env.array_theories := Sarraytheory.add (ArrayWords {sizew; sizea}) !(env.array_theories) let add_SubArray env sizes sizeb = add_Array env sizes; add_Array env sizeb; env.array_theories := Sarraytheory.add (SubArray {sizes; sizeb}) !(env.array_theories) let add_SubArrayDirect env sizew sizes sizeb = add_ArrayWords env sizew sizes; add_ArrayWords env sizew sizeb; env.array_theories := Sarraytheory.add (SubArrayDirect {sizew; sizes; sizeb}) !(env.array_theories) let add_SubArrayCast env sizews sizewb sizes sizeb = add_ArrayWords env sizews sizes; add_ArrayWords env sizewb sizeb; env.array_theories := Sarraytheory.add (SubArrayCast {sizews; sizewb; sizes; sizeb}) !(env.array_theories) let add_ArrayAccessCast env sizews sizewb sizeb = add_ArrayWords env sizewb sizeb; env.array_theories := Sarraytheory.add (ArrayAccessCast {sizews; sizewb; sizeb}) !(env.array_theories) let add_randombytes env n = env.randombytes := Sint.add n !(env.randombytes) let add_jarray env ws n = let ats = Sarraytheory.add (Array n) !(env.array_theories) in env.array_theories := Sarraytheory.add (WArray (arr_size ws n)) ats let create_name env s = if not (Ss.mem s !(env.alls)) then s else let rec aux i = let s = Format.sprintf "%s_%i" s i in if Ss.mem s !(env.alls) then aux (i+1) else s in aux 0 let mkname env n = n |> String.uncapitalize_ascii |> escape |> create_name env let set_var env x = let s = mkname env x.v_name in { env with alls = ref (Ss.add s !(env.alls)); vars = Mv.add x s env.vars } let add_ty env = function | Bty _ -> () | Arr (_ws, n) -> add_Array env n let empty arch pd array_theories = { arch; pd; alls = ref keywords; vars = Mv.empty; funs = Mf.empty; array_theories; auxv = ref Mpty.empty; count = Mpty.empty; randombytes = ref Sint.empty; } let set_fun env fd = let s = mkname env fd.f_name.fn_name in let funs = Mf.add fd.f_name (s, (fd.f_tyout, fd.f_tyin)) env.funs in { env with funs; alls = ref (Ss.add s !(env.alls)) } let get_funtype env f = snd (Mf.find f env.funs) let get_funname env f = fst (Mf.find f env.funs) (* Auxiliary variables created by "create_aux" have the given prefix and their name, and are declared with the given type. Each created variable is guaranteed to be unique for all create_aux calls with **the same env** and (recursively) with **envs further derived by new_aux_range**. However, aux var may be resued across other env (e.g. in two sibling envs created by two calls to new_aux_range on the same env). This is implemented by keeping a per-env count of created (prefix, ty) auxs (env.count), while env.auxv tracks the complete list of created aux in the whole function (for re-used and initial declaration). new_aux_range copies env.count, ensuring that we don't reuse variables already created for this env, but that different calls to new_aux_range do not share the same env.count (hence may use the same auxs). *) let create_aux env prefix ty = let i = try Mpty.find (prefix, ty) env.count with Not_found -> 0 in let l = try Mpty.find (prefix, ty) !(env.auxv) with Not_found -> BatVect.empty in env.count <- Mpty.add (prefix,ty) (i+1) env.count; if i < BatVect.length l then begin BatVect.get l i end else begin let aux = create_name env prefix in env.auxv := Mpty.add (prefix, ty) (BatVect.append aux l) !(env.auxv); env.alls := Ss.add aux !(env.alls); aux end (* Return the last created aux for (prefix, ty) in this env. *) let reuse_aux env prefix ty = let i = Mpty.find (prefix, ty) env.count in let l = Mpty.find (prefix, ty) !(env.auxv) in BatVect.get l (i-1) let new_aux_range env = { env with count = env.count } let new_fun env = { env with count = Mpty.empty; auxv = ref Mpty.empty} let aux_vars env = let unpack_vars ((_, ty), vars) = List.map (fun v -> (v, ty)) (BatVect.to_list vars) in List.flatten (List.map unpack_vars (Mpty.bindings !(env.auxv))) end let check_array env x = match (L.unloc x).v_ty with | Arr(ws, n) -> Sarraytheory.mem (Array n) (Env.array_theories env) && Sarraytheory.mem (WArray (arr_size ws n)) (Env.array_theories env) | _ -> true (* ------------------------------------------------------------------- *) (* Formatting to string helpers *) let fmt_array_theory at = match at with | Array n -> Format.sprintf "Array%i" n | WArray n -> Format.sprintf "WArray%i" n | ArrayWords aw -> Format.sprintf "ArrayWords%iW%i" aw.sizea (8*aw.sizew) | SubArray x -> Format.sprintf "SubArray%i_%i" x.sizes x.sizeb | SubArrayDirect x -> Format.sprintf "SubArrayDirect%i_%iW%i" x.sizes x.sizeb (8*x.sizew) | SubArrayCast x -> Format.sprintf "SubArrayDirect%iW%i_%iW%i" x.sizes (8*x.sizews) x.sizeb (8*x.sizewb) | ArrayAccessCast x -> Format.sprintf "ArrayAccessCastW%i_%iW%i" (8*x.sizews) x.sizeb (8*x.sizewb) | ByteArray n -> Format.sprintf "BArray%i" n | SubByteArray x -> Format.sprintf "SBArray%i_%i" x.sizeb x.sizes let fmt_Wsz sz = Format.asprintf "W%i" (int_of_ws sz) let fmt_op2 fmt op = let fmt_signed fmt ws is = function | E.Cmp_w (Signed, _) -> Format.fprintf fmt "\\s%s" ws | E.Cmp_w (Unsigned, _) -> Format.fprintf fmt "\\u%s" ws | _ -> Format.fprintf fmt "%s" is in let fmt_div fmt ws uints sints sg k = match sg, k with | Signed, E.Op_w _ -> Format.fprintf fmt "\\s%s" ws | Unsigned, E.Op_w _ -> Format.fprintf fmt "\\u%s" ws | Signed, E.Op_int -> Format.fprintf fmt "%s" sints | Unsigned, E.Op_int -> Format.fprintf fmt "%s" uints in let fmt_vop2 fmt (s,ve,ws) = Format.fprintf fmt "\\v%s%iu%i" s (int_of_velem ve) (int_of_ws ws) in match op with | E.Obeq -> Format.fprintf fmt "=" | E.Oand -> Format.fprintf fmt "/\\" | E.Oor -> Format.fprintf fmt "\\/" | E.Oadd _ -> Format.fprintf fmt "+" | E.Omul _ -> Format.fprintf fmt "*" | E.Odiv(sg, k) -> fmt_div fmt "div" "%/" "\\zquot" sg k | E.Omod(sg, k) -> fmt_div fmt "mod" "%%" "\\zrem" sg k | E.Osub _ -> Format.fprintf fmt "-" | E.Oland _ -> Format.fprintf fmt "`&`" | E.Olor _ -> Format.fprintf fmt "`|`" | E.Olxor _ -> Format.fprintf fmt "`^`" | E.Olsr _ -> Format.fprintf fmt "`>>`" | E.Olsl _ -> Format.fprintf fmt "`<<`" | E.Oasr _ -> Format.fprintf fmt "`|>>`" | E.Orol _ -> Format.fprintf fmt "`|<<|`" | E.Oror _ -> Format.fprintf fmt "`|>>|`" | E.Oeq _ -> Format.fprintf fmt "=" | E.Oneq _ -> Format.fprintf fmt "<>" | E.Olt s| E.Ogt s -> fmt_signed fmt "lt" "<" s | E.Ole s | E.Oge s -> fmt_signed fmt "le" "<=" s | Ovadd(ve,ws) -> fmt_vop2 fmt ("add", ve, ws) | Ovsub(ve,ws) -> fmt_vop2 fmt ("sub", ve, ws) | Ovmul(ve,ws) -> fmt_vop2 fmt ("mul", ve, ws) | Ovlsr(ve,ws) -> fmt_vop2 fmt ("shr", ve, ws) | Ovlsl(ve,ws) -> fmt_vop2 fmt ("shl", ve, ws) | Ovasr(ve,ws) -> fmt_vop2 fmt ("sar", ve, ws) | Owi2 _ -> assert false (* wint should have been removed by wint_int or wint_word *) let fmt_access aa = if aa = Warray_.AAdirect then "_direct" else "" (* ------------------------------------------------------------------- *) (* Easycrypt AST pretty-printing *) let pp_ec_ident fmt ident = Format.fprintf fmt "@[%a@]" (pp_list "." pp_string) ident let rec pp_ec_ast_expr fmt e = match e with | Econst z -> if Z.leq Z.zero z then Format.fprintf fmt "%a" Z.pp_print z else Format.fprintf fmt "(%a)" Z.pp_print z | Ebool b -> pp_bool fmt b | Eident s -> pp_ec_ident fmt s | Eapp (f, ops) -> Format.fprintf fmt "@[(@,%a@,)@]" (Format.(pp_print_list ~pp_sep:(fun fmt () -> fprintf fmt "@ ")) pp_ec_ast_expr) (f::ops) | Efun1 (var, e) -> Format.fprintf fmt "@[(fun %s => %a)@]" var pp_ec_ast_expr e | Eop2 (op, e1, e2) -> pp_ec_op2 fmt (op, e1, e2) | Eop3 (op, e1, e2, e3) -> pp_ec_op3 fmt (op, e1, e2, e3) | Elist es -> Format.fprintf fmt "@[[%a]@]" (pp_list ";@ " pp_ec_ast_expr) es | Etuple es -> Format.fprintf fmt "@[(%a)@]" (pp_list ",@ " pp_ec_ast_expr) es and pp_ec_op2 fmt (op2, e1, e2) = let f fmt = match op2 with | ArrayGet -> Format.fprintf fmt "@[%a.[%a]@]" | Plus -> Format.fprintf fmt "@[(%a +@ %a)@]" | Infix s -> (fun pp1 e1 -> Format.fprintf fmt "@[(%a %s@ %a)@]" pp1 e1 s) in (f fmt) pp_ec_ast_expr e1 pp_ec_ast_expr e2 and pp_ec_op3 fmt (op, e1, e2, e3) = let f fmt = match op with | Ternary -> Format.fprintf fmt "@[(%a ? %a : %a)@]" | If -> Format.fprintf fmt "@[(if %a then %a else %a)@]" | InORange -> Format.fprintf fmt "@[(%a <= %a < %a)@]" in (f fmt) pp_ec_ast_expr e1 pp_ec_ast_expr e2 pp_ec_ast_expr e3 let pp_ec_lvalue fmt (lval: ec_lvalue) = match lval with | LvIdent ident -> pp_ec_ident fmt ident | LvArrItem (ident, e) -> pp_ec_op2 fmt (ArrayGet, Eident ident, e) let pp_ec_lvalues fmt (lvalues: ec_lvalues) = match lvalues with | [] -> assert false | [lv] -> pp_ec_lvalue fmt lv | _ -> Format.fprintf fmt "@[(%a)@]" (pp_list ",@ " pp_ec_lvalue) lvalues let rec pp_ec_ast_stmt fmt stmt = Format.fprintf fmt "@[<v>%a@]" (pp_list "@ " pp_ec_ast_instr) stmt and pp_ec_ast_instr fmt instr = match instr with | ESasgn (lv, e) -> Format.fprintf fmt "@[%a <-@ %a;@]" pp_ec_lvalues lv pp_ec_ast_expr e | EScall (lvs, f, args) -> let pp_res fmt lvs = if lvs = [] then Format.fprintf fmt "" else Format.fprintf fmt "%a <%@ " pp_ec_lvalues lvs in Format.fprintf fmt "@[%a%a (%a);@]" pp_res lvs pp_ec_ast_expr (Eident f) (pp_list ",@ " pp_ec_ast_expr) args | ESsample (lv, e) -> Format.fprintf fmt "@[%a <$@ %a;@]" pp_ec_lvalues lv pp_ec_ast_expr e | ESif (e, c1, c2) -> Format.fprintf fmt "@[<v>if (%a) {@ %a@ } else {@ %a@ }@]" pp_ec_ast_expr e pp_ec_ast_stmt c1 pp_ec_ast_stmt c2 | ESwhile (e, c) -> Format.fprintf fmt "@[<v>while (%a) {@ %a@ }@]" pp_ec_ast_expr e pp_ec_ast_stmt c | ESreturn e -> Format.fprintf fmt "@[return %a;@]" pp_ec_ast_expr e | EScomment s -> Format.fprintf fmt "@[(* %s *)@]" s let pp_ec_vdecl fmt (x, ty) = Format.fprintf fmt "%s:%a" x pp_string ty let pp_ec_fun_decl fmt fdecl = let pp_ec_rty fmt rtys = if rtys = [] then Format.fprintf fmt "unit" else Format.fprintf fmt "@[%a@]" (pp_list " *@ " pp_string) rtys in Format.fprintf fmt "@[proc %s (@[%a@]) : @[%a@]@]" fdecl.fname (pp_list ",@ " pp_ec_vdecl) fdecl.args pp_ec_rty fdecl.rtys let pp_ec_fun fmt f = let pp_decl_s fmt v = Format.fprintf fmt "var %a;" pp_ec_vdecl v in Format.fprintf fmt "@[<v>@[%a = {@]@ @[<v>%a@ %a@]@ }@]" pp_ec_fun_decl f.decl (pp_list "@ " pp_decl_s) f.locals pp_ec_ast_stmt f.stmt let pp_ec_item fmt it = let pp_option pp fmt = function | Some x -> pp fmt x | None -> () in let pp_list_paren sep pp fmt xs = if xs = [] then () else pp_paren (pp_list sep pp) fmt xs in match it with | IrequireImport is -> Format.fprintf fmt "@[require import@ @[%a@].@]" (pp_list "@ " pp_string) is | Iimport is -> Format.fprintf fmt "@[import@ @[%a@].@]" (pp_list "@ " pp_string) is | IfromImport (m, is) -> Format.fprintf fmt "@[from %s import@ @[%a@].@]" m (pp_list "@ " pp_string) is | IfromRequireImport (m, is) -> Format.fprintf fmt "@[from %s require import@ @[%a@].@]" m (pp_list "@ " pp_string) is | Iabbrev (a, e) -> Format.fprintf fmt "@[abbrev %s =@ @[%a@].@]" a pp_ec_ast_expr e | ImoduleType mt -> Format.fprintf fmt "@[<v>@[module type %s = {@]@ @[<v>%a@]@ }.@]" mt.name (pp_list "@ " pp_ec_fun_decl) mt.funs | Imodule m -> let pp_mp fmt (m, mt) = Format.fprintf fmt "%s:%s" m mt in Format.fprintf fmt "@[<v>@[module %s@[%a@]%a = {@]@ @[<v>%a%a%a@]@ }.@]" m.name (pp_list_paren ",@ " pp_mp) m.params (pp_option (fun fmt s -> Format.fprintf fmt " : %s" s)) m.ty (pp_list "@ " (fun fmt (v, t) -> Format.fprintf fmt "@[var %s : %s@]" v t)) m.vars (fun fmt _ -> if m.vars = [] then (Format.fprintf fmt "") else (Format.fprintf fmt "@ ")) () (pp_list "@ " pp_ec_fun) m.funs let pp_ec_prog fmt prog = Format.fprintf fmt "@[<v>%a@]" (pp_list "@ @ " pp_ec_item) prog (* ------------------------------------------------------------------- *) (* Array theory cloning *) let fmt_array_decl fmt i = Format.fprintf fmt "@[<v>from Jasmin require import JArray.@ @ "; Format.fprintf fmt "clone export PolyArray as Array%i with op size <- %i.@]@." i i let fmt_warray_decl fmt i = Format.fprintf fmt "@[<v>from Jasmin require import JWord_array.@ @ "; Format.fprintf fmt "clone export WArray as WArray%i with op size <- %i.@]@." i i let fmt_op fmt (op_name, v) = Format.fprintf fmt "op %s <- %i" op_name v let fmt_the fmt (th, v) = Format.fprintf fmt "theory %s <- %s" th v let fmt_th fmt (th, v) = Format.fprintf fmt "theory %s <= %s" th v let fmt_arraywords_decl fmt (aw: arraywords) = let arrayn = Format.sprintf "Array%i" aw.sizea in let warrayn = Format.sprintf "WArray%i" (aw.sizew*aw.sizea) in let fmt_insts fmt (aw: arraywords) = Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a" fmt_op ("sizeW", aw.sizew) fmt_op ("sizeA", aw.sizea) fmt_th ("Word", Format.sprintf "W%i" (8*aw.sizew)) fmt_th ("ArrayN", arrayn) fmt_th ("WArrayN", warrayn) in Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ "; Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayn warrayn; Format.fprintf fmt "clone export ArrayWords as %s with @[%a@].@]@." (fmt_array_theory (ArrayWords aw)) fmt_insts aw let fmt_subarray_decl fmt (s: subarray) = let arrays = Format.sprintf "Array%i" s.sizes in let arrayb = Format.sprintf "Array%i" s.sizeb in let fmt_insts fmt (s: subarray) = Format.fprintf fmt "%a,@ %a,@ %a,@ %a" fmt_op ("sizeS", s.sizes) fmt_op ("sizeB", s.sizeb) fmt_th ("ArrayS", arrays) fmt_th ("ArrayB", arrayb) in Format.fprintf fmt "@[<v>from Jasmin require import JArray.@ @ "; Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrays arrayb; Format.fprintf fmt "clone export SubArray as %s with @[%a@].@]@." (fmt_array_theory (SubArray s)) fmt_insts s let fmt_subarraydirect_decl fmt (s: subarraydirect) = let arrayws = fmt_array_theory (ArrayWords {sizew=s.sizew; sizea=s.sizes}) in let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizew; sizea=s.sizeb}) in let fmt_insts fmt (s: subarraydirect) = Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a" fmt_op ("sizeW", s.sizew) fmt_op ("sizeS", s.sizes) fmt_op ("sizeB", s.sizeb) fmt_the ("Word", Format.sprintf "W%i" (8*s.sizew)) fmt_th ("ArrayWordsS", arrayws) fmt_th ("ArrayWordsB", arraywb) in Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ "; Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayws arraywb; Format.fprintf fmt "clone export SubArrayDirect as %s with @[%a@].@]@." (fmt_array_theory (SubArrayDirect s)) fmt_insts s let fmt_subarraycast_decl fmt (s: subarraycast) = let arrayws = fmt_array_theory (ArrayWords {sizew=s.sizews; sizea=s.sizes}) in let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizewb; sizea=s.sizeb}) in let fmt_insts fmt (s: subarraycast) = Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a,@ %a,@ %a" fmt_op ("sizeWS", s.sizews) fmt_op ("sizeWB", s.sizewb) fmt_op ("sizeS", s.sizes) fmt_op ("sizeB", s.sizeb) fmt_the ("WordS", Format.sprintf "W%i" (8*s.sizews)) fmt_the ("WordB", Format.sprintf "W%i" (8*s.sizewb)) fmt_th ("ArrayWordsS", arrayws) fmt_th ("ArrayWordsB", arraywb) in Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ "; Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayws arraywb; Format.fprintf fmt "clone export SubArrayCast as %s with @[%a@].@]@." (fmt_array_theory (SubArrayCast s)) fmt_insts s let fmt_arrayaccesscast_decl fmt (s: arrayaccesscast) = let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizewb; sizea=s.sizeb}) in let fmt_insts fmt (s: arrayaccesscast) = Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a" fmt_op ("sizeWS", s.sizews) fmt_op ("sizeWB", s.sizewb) fmt_op ("sizeB", s.sizeb) fmt_the ("WordS", Format.sprintf "W%i" (8*s.sizews)) fmt_the ("WordB", Format.sprintf "W%i" (8*s.sizewb)) fmt_th ("ArrayWordsB", arraywb) in Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ "; Format.fprintf fmt "@[<v>require import %s.@ @ " arraywb; Format.fprintf fmt "clone export ArrayAccessCast as %s with @[%a@].@]@." (fmt_array_theory (ArrayAccessCast s)) fmt_insts s let fmt_bytearray_decl fmt n = Format.fprintf fmt "@[<v>from Jasmin require import JByte_array.@ @ "; Format.fprintf fmt "clone include ByteArray with op size <= %i.@]@." n let fmt_subbytearray_decl fmt (s:subarray) = let arrays = fmt_array_theory (ByteArray s.sizes) in let arrayb = fmt_array_theory (ByteArray s.sizeb) in let fmt_insts fmt (s: subarray) = Format.fprintf fmt "%a,@ %a" fmt_th ("Asmall", arrays) fmt_th ("Abig", arrayb) in Format.fprintf fmt "@[<v>from Jasmin require import JByte_array.@ @ "; Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrays arrayb; Format.fprintf fmt "clone SubByteArray as %s with @[%a@].@]@." (fmt_array_theory (SubByteArray s)) fmt_insts s let save_array_theory ~prefix at = let fname = Format.sprintf "%s.ec" (fmt_array_theory at) in let path = Filename.concat prefix fname in let out = open_out path in let fmt = Format.formatter_of_out_channel out in match at with | Array n -> fmt_array_decl fmt n | WArray n -> fmt_warray_decl fmt n | ArrayWords aw -> fmt_arraywords_decl fmt aw | SubArray sa -> fmt_subarray_decl fmt sa | SubArrayDirect sad -> fmt_subarraydirect_decl fmt sad | SubArrayCast sac -> fmt_subarraycast_decl fmt sac | ArrayAccessCast asc -> fmt_arrayaccesscast_decl fmt asc | ByteArray n -> fmt_bytearray_decl fmt n | SubByteArray sa -> fmt_subbytearray_decl fmt sa ; close_out out (* ------------------------------------------------------------------- *) (* Easycrypt AST construction helpers *) let ec_ident s = Eident [s] let ec_aget a i = Eop2 (ArrayGet, a, i) let ec_int x = Econst (Z.of_int x) let ec_vars (env: Env.t) (x: var) = Mv.find x (Env.vars env) let ec_vari env (x:var) = Eident [ec_vars env x] let glob_mem = ["Glob"; "mem"] let glob_memi = Eident glob_mem let ec_pd env = Eident [Format.sprintf "W%d" (int_of_ws (Env.pd env)); "to_uint"] let ec_apps1 s e = Eapp (ec_ident s, [e]) let ec_zeroext_sz (szo, szi) e = let io, ii = int_of_ws szo, int_of_ws szi in if ii < io then ec_apps1 (Format.sprintf "zeroextu%i" io) e else if ii = io then e else (* io < ii *) ec_apps1 (Format.sprintf "truncateu%i" io) e let ec_zeroext (t_o, t_i) e = if t_o = t_i then e else ec_zeroext_sz (ws_of_ty t_o, ws_of_ty t_i) e let ec_Array env n = Env.add_Array env n; Format.sprintf "Array%i" n let ec_WArray env n = Env.add_WArray env n; Format.sprintf "WArray%i" n let ec_BArray env n = Env.add_BArray env n; Format.sprintf "BArray%i" n let ec_SBArray env (s:subarray) = Env.add_SBArray env s; Format.sprintf "SBArray%i_%i" s.sizeb s.sizes let toec_ty onarray env ty = match ty with | Bty Bool -> "bool" | Bty Int -> "int" | Bty (U ws) -> Format.sprintf "%s.t" (fmt_Wsz ws) | Arr(ws,n) -> onarray env ws n let onarray_ty_dfl env ws n = Format.sprintf "%s.t %s.t" (fmt_Wsz ws) (ec_Array env n) let of_list_dfl env _ws n = Eapp (Eident [ec_Array env n; "of_list"], [ec_ident "witness"]) (* ------------------------------------------------------------------- *) (* Extraction of array operations *) module type EcArray = sig val ec_darray8: Env.t -> int -> ec_expr val ec_cast_array: Env.t -> wsize * int -> wsize * int -> ec_expr -> ec_expr val toec_pget: Env.t -> Memory_model.aligned * Warray_.arr_access * wsize * int gvar * ec_expr -> ec_expr val toec_psub: Env.t -> Warray_.arr_access * wsize * int * int ggvar * ec_expr -> ec_expr val toec_laset: Env.t -> Warray_.arr_access * wsize * int gvar * ec_expr -> ec_expr -> ec_instr val toec_lasub: Env.t -> Warray_.arr_access * wsize * int * int gvar L.located * ec_expr -> ec_expr -> ec_expr val onarray_ty: Env.t -> wsize -> int -> string val add_arr: Env.t -> wsize -> int -> unit val add_jarray: Env.t -> wsize -> int -> unit val of_list: Env.t -> wsize -> int -> ec_expr end module EcArrayOld : EcArray = struct let ec_WArray_init env ws n = Eident [ec_WArray env (arr_size ws n); Format.sprintf "init%i" (int_of_ws ws)] let ec_WArray_initf env ws n f = let i = Env.create_name env "i" in Eapp (ec_WArray_init env ws n, [Efun1 (i, f i)]) let ec_Array_init env len = Eident [ec_Array env len; "init"] let ec_initi env (x, n, ws) = let f i = ec_aget x (ec_ident i) in ec_WArray_initf env ws n f let ec_initi_var env (x, n, ws) = ec_initi env (ec_vari env x, n, ws) let ec_darray8 env n = let wa = ec_WArray env n in let eto = Efun1 ("a", Eapp (Eident [ec_Array env n; "init"], [ Efun1 ("i", Eapp (Eident [wa; "get8"], [ec_ident "a"; ec_ident "i"])) ])) in Eapp ( ec_ident "dmap", [Eident [ec_WArray env n; "darray"]; eto] ) let ec_cast_array env (ws, n) (wse, ne) e = let i = Env.create_name env "i" in let geti = ec_ident (Format.sprintf "get%i" (int_of_ws ws)) in let init_fun = Efun1 (i, Eapp (geti, [ec_initi env (e, ne, wse); ec_ident i])) in Eapp (ec_Array_init env n, [init_fun]) let toec_pget env (a, aa, ws, x, e) = let (xws, n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then ec_aget (ec_vari env x) e else Eapp ( (ec_ident (Format.sprintf "get%i%s" (int_of_ws ws) (fmt_access aa))), [ec_initi_var env (x, n, xws); e] ) let toec_psub env (aa, ws, len, x, e) = assert (check_array env x.gv); let i = Env.create_name env "i" in let x = L.unloc x.gv in let (xws,n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then Eapp ( ec_Array_init env len, [ Efun1 (i, ec_aget (ec_vari env x) (Eop2 (Plus, e, ec_ident i))) ]) else Eapp ( ec_Array_init env len, [ Efun1 (i, Eapp (ec_ident (Format.sprintf "get%i%s" (int_of_ws ws) (fmt_access aa)), [ ec_initi_var env (x, n, xws); Eop2 (Plus, e, ec_ident i) ]) ) ]) let toec_laset env (aa, ws, x, e1) e = let (xws,n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then ESasgn ([LvArrItem ([ec_vars env x], e1)], e) else let eset = let nws = n * int_of_ws xws in let warray = ec_WArray env (nws / 8) in let waget = Eident [warray; Format.sprintf "get%i" (int_of_ws xws)] in let wsi = int_of_ws ws in let waset = Eident [warray; Format.sprintf "set%i%s" wsi (fmt_access aa)] in let updwa = Eapp (waset, [ec_initi_var env (x, n, xws); e1; e]) in Eapp (ec_Array_init env n, [Eapp (waget, [updwa])]) in ESasgn ([LvIdent [ec_vars env x]], eset) let toec_lasub env (aa, ws, len, x, e1) e = assert (check_array env x); let x = L.unloc x in let (xws, n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then let i = Env.create_name env "i" in let range_ub = Eop2 (Plus, e1, ec_int len) in Eapp (ec_Array_init env n, [ Efun1 (i, Eop3 ( If, Eop3 (InORange, e1, ec_ident i, range_ub), ec_aget e (Eop2 (Infix "-", ec_ident i, e1)), ec_aget (ec_vari env x) (ec_ident i) )) ]) else let nws = n * int_of_ws xws in let nws8 = nws / 8 in let start = if aa = Warray_.AAscale then Eop2 (Infix "*", ec_int (int_of_ws ws / 8), e1) else e1 in let len8 = len * int_of_ws ws / 8 in let i = Env.create_name env "i" in let in_range = Eop3 (InORange, start, ec_ident i, Eop2 (Plus, start, ec_int len8)) in let ainit = Eident [ec_WArray env nws8; "init8"] in let aw_get8 len = Eident [ec_WArray env len; "get8"] in let at = Eapp (aw_get8 len8, [ec_initi env (e, len, ws); Eop2 (Infix "-", ec_ident i, start)]) in let ae = Eapp (aw_get8 nws8, [ec_initi_var env (x, n, xws); ec_ident i]) in let a = Eapp (ainit, [Efun1 (i, Eop3 (If, in_range, at, ae))]) in let wag = Eident [ec_WArray env nws8; Format.sprintf "get%i" (int_of_ws xws)] in Eapp (ec_Array_init env n, [Eapp (wag, [a])]) let onarray_ty = onarray_ty_dfl let add_arr env _ws n = Env.add_Array env n let add_jarray env ws n = Env.add_jarray env ws n let of_list = of_list_dfl end module EcWArray: EcArray = struct let ec_darray8 env n = Env.add_ArrayWords env 1 n; let aw = fmt_array_theory (ArrayWords { sizew=1; sizea=n }) in let eto = Eident [aw; "to_word_array"] in Eapp ( ec_ident "dmap", [Eident [ec_WArray env n; "darray"]; eto] ) let ec_cast_array env (ws, n) (wse, ne) e = let sizews = ws2bytes ws in let sizewb = ws2bytes wse in Env.add_SubArrayCast env sizews sizewb n ne; let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = n; sizeb = ne }) in Eapp (Eident [sa; "get_sub"], [e; ec_int 0]) let toec_pget env (a, aa, ws, x, e) = let (xws,n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then ec_aget (ec_vari env x) e else let sizews = ws2bytes ws in let sizewb = ws2bytes xws in Env.add_ArrayAccessCast env sizews sizewb n; let arrayaccesscast = fmt_array_theory (ArrayAccessCast { sizews; sizewb; sizeb = n }) in let getf = Format.sprintf "get_cast%s" (fmt_access aa) in Eapp (Eident [arrayaccesscast; getf], [ec_vari env x; e]) let toec_psub env (aa, ws, len, x, e) = assert (check_array env x.gv); let x = L.unloc x.gv in let (xws,n) = array_kind x.v_ty in let subf = if ws = xws then if aa = Warray_.AAscale then begin (* Sub-array access aligned *) Env.add_SubArray env len n; let subarray = fmt_array_theory (SubArray { sizes = len; sizeb = n }) in Eident [subarray; "get_sub"] end else begin (* Sub-array access unaligned *) let sizew = ws2bytes ws in Env.add_SubArrayDirect env sizew len n; let sa = fmt_array_theory (SubArrayDirect { sizew; sizes = len; sizeb = n }) in Eident [sa; "get_sub_direct"] end else begin (* Sub-array access typecast (direct or not) *) let get_sub = if aa = Warray_.AAscale then "get_sub" else "get_sub_direct" in let sizews = ws2bytes ws in let sizewb = ws2bytes xws in Env.add_SubArrayCast env sizews sizewb len n; let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = len; sizeb = n }) in Eident [sa; get_sub] end in Eapp (subf, [ec_vari env x; e]) let toec_laset env (aa, ws, x, e1) e = let (xws,n) = array_kind x.v_ty in if ws = xws && aa = Warray_.AAscale then ESasgn ([LvArrItem ([ec_vars env x], e1)], e) else let eset = let sizews = ws2bytes ws in let sizewb = ws2bytes xws in Env.add_ArrayAccessCast env sizews sizewb n; let arrayaccesscast = fmt_array_theory (ArrayAccessCast { sizews; sizewb; sizeb = n }) in let setf = Format.sprintf "set_cast%s" (fmt_access aa) in let subf = Eident [arrayaccesscast; setf] in Eapp (subf, [ec_vari env x; e1; e]) in ESasgn ([LvIdent [ec_vars env x]], eset) let toec_lasub env (aa, ws, len, x, e1) e = assert (check_array env x); let x = L.unloc x in let (xws, n) = array_kind x.v_ty in let subf = if ws = xws then if aa = Warray_.AAscale then begin (* Sub-array update aligned *) Env.add_SubArray env len n; let subarray = fmt_array_theory (SubArray { sizes = len; sizeb = n }) in Eident [subarray; "set_sub"] end else begin (* Sub-array update unaligned *) let sizew = ws2bytes ws in Env.add_SubArrayDirect env sizew len n; let sa = fmt_array_theory (SubArrayDirect { sizew; sizes = len; sizeb = n }) in Eident [sa; "set_sub_direct"] end else begin (* Sub-array update typecast (direct or not) *) let set_sub = if aa = Warray_.AAscale then "set_sub" else "set_sub_direct" in let sizews = ws2bytes ws in let sizewb = ws2bytes xws in Env.add_SubArrayCast env sizews sizewb len n; let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = len; sizeb = n }) in Eident [sa; set_sub] end in Eapp (subf, [ec_vari env x; e1; e]) let onarray_ty = onarray_ty_dfl let add_arr env _ws n = Env.add_Array env n let add_jarray env ws n = Env.add_jarray env ws n let of_list = of_list_dfl end module EcBArray : EcArray = struct let ec_darray8 (env: Env.t) (sz:int) = Eident [ec_BArray env sz; "darray"] let ec_cast_array (env:Env.t) (ws1, sz1) (ws2, sz2) e = assert (Prog.arr_size ws1 sz1 = Prog.arr_size ws2 sz2); e let direct aa = match aa with | Warray_.AAdirect -> "d" | Warray_.AAscale -> "" let scale aa ws = match aa with | Warray_.AAdirect -> "" | Warray_.AAscale -> Format.sprintf "%i" (int_of_ws ws) let toec_pget (env:Env.t) (a, aa, ws, x, ei) = let (xws, n) = array_kind x.v_ty in let sz = arr_size xws n in Eapp (Eident [ec_BArray env sz; Format.sprintf "get%i%s" (int_of_ws ws) (direct aa)], [ec_vari env x; ei]) let toec_laset (env:Env.t) (aa, ws, x, ei) e = let (xws,n) = array_kind x.v_ty in let sz = arr_size xws n in let eset = Eapp (Eident [ec_BArray env sz; Format.sprintf "set%i%s" (int_of_ws ws) (direct aa)], [ec_vari env x; ei; e]) in ESasgn ([LvIdent [ec_vars env x]], eset) let toec_psub (env:Env.t) (aa, ws, len, x, ei) = let x = L.unloc x.gv in let (xws,n) = array_kind x.v_ty in let sizes = arr_size ws len in let sizeb = arr_size xws n in let s = { sizes; sizeb } in Eapp(Eident [ec_SBArray env s; Format.sprintf "get_sub%s" (scale aa ws)], [ec_vari env x; ei]) let toec_lasub (env:Env.t) (aa, ws, len, x, ei) e = let x = L.unloc x in let (xws,n) = array_kind x.v_ty in let sizes = arr_size ws len in let sizeb = arr_size xws n in let s = { sizes; sizeb } in Eapp(Eident [ec_SBArray env s; Format.sprintf "set_sub%s" (scale aa ws)], [ec_vari env x; ei; e]) let onarray_ty env ws n = Format.sprintf "%s.t" (ec_BArray env (arr_size ws n)) let add_arr env ws n = Env.add_BArray env (arr_size ws n) let add_jarray = add_arr let of_list env ws n = Eident [ec_BArray env (arr_size ws n); Format.sprintf "of_list%i" (int_of_ws ws)] end (* ------------------------------------------------------------------- *) (* Jasmin AST transformation and helpers *) let base_op = function | Sopn.Oasm (Arch_extra.BaseOp (_, o)) -> Sopn.Oasm (Arch_extra.BaseOp(None,o)) | o -> o let ty_expr = function | Pconst _ -> tint | Pbool _ -> tbool | Parr_init len -> Arr (U8, len) | Pvar x -> x.gv.L.pl_desc.v_ty | Pload (_, sz,_) -> tu sz | Pget (_,_, sz,_,_) -> tu sz | Psub (_,ws, len, _, _) -> Arr(ws, len) | Papp1 (op,_) -> Conv.ty_of_cty (snd (E.type_of_op1 op)) | Papp2 (op,_,_) -> Conv.ty_of_cty (snd (E.type_of_op2 op)) | PappN (op, _) -> Conv.ty_of_cty (snd (E.type_of_opN op)) | Pif (ty,_,_,_) -> ty let ty_sopn pd asmOp op es = match op with (* Do a special case for copy since the Coq type loose information *) | Sopn.Opseudo_op (Pseudo_operator.Ocopy(ws, p)) -> let l = [Arr(ws, Conv.int_of_pos p)] in l, l | Sopn.Opseudo_op (Pseudo_operator.Oswap _) -> let l = List.map ty_expr es in l, l | _ -> List.map Conv.ty_of_cty (Sopn.sopn_tout pd asmOp op), List.map Conv.ty_of_cty (Sopn.sopn_tin pd asmOp op) (* This code replaces for loop that modify the loop counter by while loop, it would be nice to prove in Coq the validity of the transformation *) let is_write_lv x = function | Lnone _ | Lmem _ -> false | Lvar x' | Laset(_, _, _, x', _) | Lasub (_, _, _, x', _) -> V.equal x x'.L.pl_desc let is_write_lvs x = List.exists (is_write_lv x) let rec is_write_i x i = match i.i_desc with | Cassgn (lv,_,_,_) -> is_write_lv x lv | Copn(lvs,_,_,_) | Ccall(lvs, _, _) | Csyscall(lvs,_,_) -> is_write_lvs x lvs | Cif(_, c1, c2) | Cwhile(_, c1, _, _, c2) -> is_write_c x c1 || is_write_c x c2 | Cfor(x',_,c) -> V.equal x x'.L.pl_desc || is_write_c x c and is_write_c x c = List.exists (is_write_i x) c let rec remove_for_i i = let i_desc = match i.i_desc with | Cassgn _ | Copn _ | Ccall _ | Csyscall _ -> i.i_desc | Cif(e, c1, c2) -> Cif(e, remove_for c1, remove_for c2) | Cwhile(a, c1, e, loc, c2) -> Cwhile(a, remove_for c1, e, loc, remove_for c2) | Cfor(j,r,c) -> let jd = j.pl_desc in if not (is_write_c jd c) then Cfor(j, r, remove_for c) else let jd' = V.clone jd in let j' = { j with pl_desc = jd' } in let ii' = Cassgn (Lvar j, E.AT_inline, jd.v_ty, Pvar (gkvar j')) in let ii' = { i with i_desc = ii' } in Cfor (j', r, ii' :: remove_for c) in { i with i_desc } and remove_for c = List.map remove_for_i c let ty_lval = function | Lnone (_, ty) -> ty | Lvar x -> (L.unloc x).v_ty | Lmem (_, ws,_,_) | Laset(_, _, ws, _, _) -> Bty (U ws) | Lasub (_,ws, len, _, _) -> Arr(ws, len) module type EcExpression = sig val ec_cast: Env.t -> int gty * int gty -> ec_expr -> ec_expr val toec_cast: Env.t -> int gty * expr -> ec_expr val toec_expr: Env.t -> expr -> ec_expr end let int_of_word ws e = Papp1 (E.Oint_of_word(Unsigned, ws), e) let int_of_ptr pd e = match e with | Papp1(E.Owi1(_, E.WIwint_of_int ws), e) when ws = pd -> e | _ -> int_of_word pd e (* ------------------------------------------------------------------- *) (* Jasmin AST -> Easycrypt AST *) module EcExpression(EA: EcArray): EcExpression = struct (* ------------------------------------------------------------------- *) (* Extraction of expressions *) let ec_cast env (ty, ety) e = if ety = ty then e else match ty with | Bty _ -> ec_zeroext (ty, ety) e | Arr(ws, n) -> let wse, ne = array_kind ety in EA.ec_cast_array env (ws, n) (wse, ne) e let rec ec_op1 op e = match op with | E.Oword_of_int sz -> ec_apps1 (Format.sprintf "%s.of_int" (fmt_Wsz sz)) e | E.Oint_of_word(s, sz) -> ec_apps1 (Format.sprintf "%s.to_%sint" (fmt_Wsz sz) (string_of_signess s)) e | E.Osignext(szo,_szi) -> ec_apps1 (Format.sprintf "sigextu%i" (int_of_ws szo)) e | E.Ozeroext(szo,szi) -> ec_zeroext_sz (szo, szi) e | E.Onot -> ec_apps1 "!" e | E.Olnot _ -> ec_apps1 "invw" e | E.Oneg _ -> ec_apps1 "-" e | E.Owi1 (_, WIwint_of_int sz) -> ec_op1 (E.Oword_of_int sz) e | E.Owi1 _ -> assert false (* other wint operator should have been removed by wint_int or wint_word *) let rec toec_expr env (e: expr) = match e with | Pconst z -> Econst z | Pbool b -> Ebool b | Parr_init _n -> ec_ident "witness" | Pvar x -> ec_vari env (L.unloc x.gv) | Pget (a, aa, ws, y, e) -> EA.toec_pget env (a, aa, ws, L.unloc y.gv, toec_expr env e) | Psub (aa, ws, len, x, e) -> EA.toec_psub env (aa, ws, len, x, toec_expr env e) | Pload (_, sz, e) -> let load = ec_ident (Format.sprintf "loadW%i" (int_of_ws sz)) in Eapp (load, [ glob_memi; toec_expr env (int_of_ptr (Env.pd env) e) ]) | Papp1 (op1, e) -> ec_op1 op1 (toec_cast env (Conv.ty_of_cty (fst (E.type_of_op1 op1)), e)) | Papp2 (op2, e1, e2) -> let t1, t2 = fst (E.type_of_op2 op2) in let te1 = (Conv.ty_of_cty t1, e1) in let te2 = (Conv.ty_of_cty t2, e2) in let te1, te2 = match op2 with | E.Ogt _ | E.Oge _ -> te2, te1 | _ -> te1, te2 in let op = Infix (Format.asprintf "%a" fmt_op2 op2) in Eop2 (op, (toec_cast env te1), (toec_cast env te2)) | PappN (op, es) -> begin match op with | Opack (ws, we) -> let i = int_of_pe we in let rec aux es = match es with | [] -> assert false | [e] -> toec_expr env e | e::es -> let exp2i = Eop2 (Infix "^", Econst (Z.of_int 2), Econst (Z.of_int i)) in Eop2 ( Infix "+", Eop2 (Infix "%%", toec_expr env e, exp2i), Eop2 (Infix "*", exp2i, aux es) ) in ec_apps1 (Format.sprintf "W%i.of_int" (int_of_ws ws)) (aux (List.rev es)) | Ocombine_flags c -> Eapp ( ec_ident (Printer.string_of_combine_flags c), List.map (toec_expr env) es ) end | Pif(_,e1,et,ef) -> let ty = ty_expr e in Eop3 ( Ternary, toec_expr env e1, toec_cast env (ty, et), toec_cast env (ty, ef) ) and toec_cast env (ty, e) = ec_cast env (ty, ty_expr e) (toec_expr env e) end module type EcLeakage = sig val ec_leaks_es: Env.t -> exprs -> ec_instr list val ec_leaks_opn: Env.t -> exprs -> ec_instr list val ec_leaking_if: Env.t -> expr -> (Env.t -> ec_stmt) -> (Env.t -> ec_stmt) -> ec_stmt val ec_leaking_while: Env.t -> (Env.t -> ec_stmt) -> expr -> (Env.t -> ec_stmt) -> ec_stmt val ec_leaking_for: Env.t -> (Env.t -> ec_stmt) -> expr -> expr -> ec_stmt -> ec_expr -> ec_stmt -> ec_stmt val ec_leaks_lvs: Env.t -> int glval list -> ec_stmt val global_leakage_vars: Env.t -> (ec_modty * ec_modty) list val leakage_imports: Env.t -> ec_item list val ec_fun_leak_init: Env.t -> ec_stmt val ec_leak_ret: Env.t -> ec_expr list -> ec_expr list val ec_leak_rty: Env.t -> ec_ty list -> ec_ty list val ec_leak_call_lvs: Env.t -> ec_lvalues val ec_leak_call_acc: Env.t -> ec_stmt end module EcLeakNormal(EE: EcExpression): EcLeakage = struct let ec_leaks_es env es = [] let ec_leaks_opn env es = [] let ec_leaking_if env e c1 c2 = [ESif (EE.toec_expr env e, c1 env, c2 env)] let ec_leaking_while env c1 e c2 = c1 env @ [ESwhile (EE.toec_expr env e, (c2 env @ c1 env))] let ec_leaking_for env c e1 e2 init cond i_upd = init @ [ESwhile (cond, c env @ i_upd)] let ec_leaks_lvs env lvs = [] let global_leakage_vars env = [] let leakage_imports env = [] let ec_fun_leak_init env = [] let ec_leak_ret env ret = ret let ec_leak_rty env rtys = rtys let ec_leak_call_lvs env = [] let ec_leak_call_acc env = [] end module EcLeakConstantTimeGlobal(EE: EcExpression): EcLeakage = struct open EE let rec leaks_e_rec pd leaks e = match e with | Pconst _ | Pbool _ | Parr_init _ |Pvar _ -> leaks | Pload (_,_,e) -> leaks_e_rec pd (int_of_ptr pd e :: leaks) e | Pget (_,_,_,_, e) | Psub (_,_,_,_,e) -> leaks_e_rec pd (e::leaks) e | Papp1 (_, e) -> leaks_e_rec pd leaks e | Papp2 (_, e1, e2) -> leaks_e_rec pd (leaks_e_rec pd leaks e1) e2 | PappN (_, es) -> leaks_es_rec pd leaks es | Pif (_, e1, e2, e3) -> leaks_e_rec pd (leaks_e_rec pd (leaks_e_rec pd leaks e1) e2) e3 and leaks_es_rec pd leaks es = List.fold_left (leaks_e_rec pd) leaks es let leaks_e pd e = leaks_e_rec pd [] e let leaks_es pd es = leaks_es_rec pd [] es let ece_leaks_e env e = List.map (toec_expr env) (leaks_e (Env.pd env) e) let ec_newleaks leaks = let add_leak lacc l = Eop2 (Infix "::", l, lacc) in List.fold_left add_leak (ec_ident "leakages") leaks let ec_addleaks leaks = [ESasgn ([LvIdent ["leakages"]], ec_newleaks leaks)] let ec_leaks = function | [] -> [] | es -> ec_addleaks [Eapp (ec_ident "LeakAddr", [Elist es])] let ec_leaks_es env es = ec_leaks (List.map (toec_expr env) (leaks_es (Env.pd env) es)) let ec_leaks_opn env es = ec_leaks_es env es let leak_cond env e = ec_addleaks [ Eapp (ec_ident "LeakAddr", [Elist (ece_leaks_e env e)]); Eapp (ec_ident "LeakCond", [toec_expr env e]) ] let ec_leaking_if env e c1 c2 = leak_cond env e @ [ESif (EE.toec_expr env e, c1 env, c2 env)] let ec_leaking_while env c1 e c2 = let le = leak_cond env e in c1 env @ le @ [ESwhile (EE.toec_expr env e, (c2 env @ c1 env @ le))] let ec_leaking_for env c e1 e2 init cond i_upd = let leaks = List.map (toec_expr env) (leaks_es (Env.pd env) [e1;e2]) in ec_addleaks [ Eapp (ec_ident "LeakAddr", [Elist leaks]); Eapp (ec_ident "LeakFor", [Etuple [toec_expr env e1; toec_expr env e2]]) ] @ init @ [ESwhile (cond, c env @ i_upd)] let leaks_lval pd = function | Lnone _ | Lvar _ -> [] | Laset (_,_,_,_, e) | Lasub (_,_,_,_,e) -> leaks_e_rec pd [e] e | Lmem (_, _, _,e) -> leaks_e_rec pd [int_of_ptr pd e] e let ec_leaks_lv env lv = ec_leaks (List.map (toec_expr env) (leaks_lval (Env.pd env) lv)) let ec_leaks_lvs env lvs = List.concat_map (ec_leaks_lv env) lvs let global_leakage_vars env = [("leakages", "leakages_glob_t")] let leakage_imports env = [IfromRequireImport ("Jasmin", ["JLeakage"])] let ec_fun_leak_init env = [] let ec_leak_ret env ret = ret let ec_leak_rty env rtys = rtys let ec_leak_call_lvs env = [] let ec_leak_call_acc env = [] end module EcLeakConstantTime(EE: EcExpression): EcLeakage = struct open EE let asgn s e = ESasgn ([LvIdent [s]], e) let int_of_word ws e = Papp1 (E.Oint_of_word(Unsigned, ws), e) let leak_addr e = Eapp (ec_ident "Leak_int", [e]) let leak_val env e = let sty = match ty_expr e with | Bty Bool -> "bool" | Bty Int -> "int" | Bty (U ws) -> fmt_Wsz ws | Arr(ws, n) -> assert false in let leakf = ec_ident (Format.sprintf "Leak_%s" sty) in [Eapp (leakf, [toec_expr env e])] let leak_addr_mem env e = let addr = int_of_ptr (Env.pd env) e in [leak_addr (toec_expr env addr)] let rec leaks_e_rec env leaks e = match e with | Pconst _ | Pbool _ | Parr_init _ | Pvar _ -> leaks | Pload (_,_,e) -> leaks_e_rec env ((leak_addr_mem env e) @ leaks) e | Pget (_,_,_,_, e) | Psub (_,_,_,_,e) -> leaks_e_rec env ([leak_addr (toec_expr env e)] @ leaks) e | Papp1 (_, e) -> leaks_e_rec env leaks e | Papp2 (_, e1, e2) -> leaks_es_rec env leaks [e1; e2] | PappN (_, es) -> leaks_es_rec env leaks es | Pif (_, e1, e2, e3) -> leaks_es_rec env leaks [e1; e2; e3] and leaks_es_rec env leaks es = List.fold_left (leaks_e_rec env) leaks es let leaks_e env e = leaks_e_rec env [] e let leaks_es env es = leaks_es_rec env [] es let leaklist leaks = Eapp (Eident ["LeakList"], [Elist leaks]) let leaklistv leakv = Eapp (Eident ["LeakList"], [Eident [leakv]]) let reset_leak vleak = [asgn vleak (Elist [])] let leakv_ty = "JLeakage.leakages" let leakacc_prefix = "leak" let start_leakacc env = reset_leak (Env.create_aux env leakacc_prefix leakv_ty) let leakacc env = Env.reuse_aux env leakacc_prefix leakv_ty let push_leak leakv leak = [asgn leakv (Eop2 (Infix "++", Eident [leakv], Elist [leak]))] let leak_block env c acc = let env_block = Env.new_aux_range env in let leak_reset = start_leakacc env_block in leak_reset @ (c env_block) @ (push_leak acc (leaklistv (leakacc env_block))) let ec_addleaks env leaks = match leaks with | [] -> [] | _ -> push_leak (leakacc env) (leaklist leaks) let ec_leaks_es env es = ec_addleaks env (leaks_es env es) let leaks_lval env = function | Lnone _ | Lvar _ -> [] | Laset (_,_,_,_, e) | Lasub (_,_,_,_,e) -> leaks_e_rec env [leak_addr (toec_expr env e)] e | Lmem (_, _, _,e) -> leaks_e_rec env (leak_addr_mem env e) e let ec_leaks_lv env lv = ec_addleaks env (leaks_lval env lv) let ec_leaks_lvs env lvs = List.concat_map (ec_leaks_lv env) lvs let ec_leaks_opn env es = ec_addleaks env (leaks_es env es) let leak_cond env e = (leaks_e env e) @ (leak_val env e) let ec_leaking_if env e c1 c2 = let acc = leakacc env in ec_addleaks env (leak_cond env e) @ [ESif (toec_expr env e, leak_block env c1 acc, leak_block env c2 acc)] let ec_leaking_while env c1 e c2 = let env = Env.new_aux_range env in let vleak_cond = Env.create_aux env "leak_cond" leakv_ty in (* We don't use leak_block since we need to check if c1 is empty. *) let env_c1 = Env.new_aux_range env in let c1 = c1 env_c1 in let (leaking_c1, reset_c1_leak, c1_leaklist) = if c1 = [] then ([], [], []) else let leak_c1 = Env.create_aux env "leak_b1" leakv_ty in let leak_start_c1 = start_leakacc env_c1 in ( leak_start_c1 @ c1 @ push_leak leak_c1 (leaklistv (leakacc env_c1)), reset_leak leak_c1, [leaklistv leak_c1] ) in let leak_c2 = Env.create_aux env (if c1 = [] then "_b" else "_b2") leakv_ty in let leaking_c2 = leak_block env c2 leak_c2 in let reset_c2_leak = reset_leak leak_c2 in reset_leak vleak_cond @ reset_c1_leak @ reset_c2_leak @ leaking_c1 @ push_leak vleak_cond (leaklist (leak_cond env e)) @ [ESwhile ( toec_expr env e, leaking_c2 @ leaking_c1 @ push_leak vleak_cond (leaklist (leak_cond env e)) )] @ push_leak (leakacc env) (leaklist (c1_leaklist @ [leaklistv vleak_cond; leaklistv leak_c2])) let leak_for_bounds env e1 e2 = leaks_es env [e1; e2] @ leak_val env e1 @ leak_val env e2 let ec_leaking_for env c e1 e2 init cond i_upd = let leak_c = Env.create_aux env "leak_b" leakv_ty in reset_leak leak_c @ ec_addleaks env (leak_for_bounds env e1 e2) @ init @ [ESwhile (cond, leak_block env c leak_c @ i_upd)] @ push_leak (leakacc env) (leaklistv leak_c) let global_leakage_vars env = [] let leakage_imports env = [IfromRequireImport ("Jasmin", ["JLeakage"])] let ec_fun_leak_init env = start_leakacc env let ec_leak_ret env ret = (env |> leakacc |> leaklistv) :: ret let leak_ret_ty = "JLeakage.leakage" let leak_ret_prefix = "leak_c" let ec_leak_rty env rtys = leak_ret_ty :: rtys let ec_leak_call_lvs env = [LvIdent [Env.create_aux env leak_ret_prefix leak_ret_ty]] let ec_leak_call_acc env = push_leak (leakacc env) (ec_ident (Env.reuse_aux env leak_ret_prefix leak_ret_ty)) end module Extraction (EA: EcArray) (EL: EcLeakage) = struct open EcExpression(EA) open EL (* ------------------------------------------------------------------- *) (* Extraction of lvals *) let ec_lvals env xs = let ec_lval env = function | Lnone _ | Lmem _ | Laset _ | Lasub _ -> assert false | Lvar x -> LvIdent [ec_vars env (L.unloc x)] in List.map (ec_lval env) xs let toec_lval1 env lv e = match lv with | Lnone _ -> assert false | Lmem(_, ws, _, e1) -> let storewi = ec_ident (Format.sprintf "storeW%i" (int_of_ws ws)) in let addr = toec_expr env (int_of_ptr (Env.pd env) e1) in ESasgn ([LvIdent glob_mem], Eapp (storewi, [glob_memi; addr; e])) | Lvar x -> let lvid = [ec_vars env (L.unloc x)] in ESasgn ([LvIdent lvid], e) | Laset (_, aa, ws, x, e1) -> let e1 = toec_expr env e1 in EA.toec_laset env (aa, ws, L.unloc x, e1) e | Lasub (aa, ws, len, x, e1) -> ESasgn ( [LvIdent [ec_vars env (L.unloc x)]], EA.toec_lasub env (aa, ws, len, x, toec_expr env e1) e ) let lvals_are_vars lvs = List.for_all (function Lvar _ -> true | _ -> false) lvs (* ------------------------------------------------------------------- *) (* Instruction extraction *) let toec_ty = toec_ty EA.onarray_ty let add_ty env = function | Bty _ -> () | Arr (ws, n) -> EA.add_arr env ws n let ec_assgn env lv (etyo, etyi) e = let e = e |> ec_zeroext (etyo, etyi) |> ec_cast env (ty_lval lv, etyo) in toec_lval1 env lv e let ec_assgn_f env lvs etyso etysi f = let stmt = if lvals_are_vars lvs && (List.map ty_lval lvs) = etyso && etyso = etysi then [f (ec_lvals env lvs)] else let ec_typs = (List.map (toec_ty env) etysi) in let env = Env.new_aux_range env in let auxs = List.map (Env.create_aux env "aux") ec_typs in let s2lv s = LvIdent [s] in let call = f (List.map s2lv auxs) in let ec_auxs = List.map ec_ident auxs in let assgn lv (ets, e) = ec_assgn env lv ets e in let tyauxs = List.combine (List.combine etyso etysi) ec_auxs in let assgn_auxs = List.map2 assgn lvs tyauxs in call :: assgn_auxs in (ec_leaks_lvs env lvs) @ stmt let ec_pcall env lvs leak_lvs otys f args = if lvals_are_vars lvs && (List.map ty_lval lvs) = otys then (ec_leaks_lvs env lvs) @ [EScall (leak_lvs @ ec_lvals env lvs, f, args)] else ec_assgn_f env lvs otys otys (fun lvals -> EScall (leak_lvs @ lvals, f, args)) let ec_expr_assgn env lvs etyso etysi e = if lvals_are_vars lvs && (List.map ty_lval lvs) = etyso && etyso = etysi then (ec_leaks_lvs env lvs) @ [ESasgn (ec_lvals env lvs, e)] else if List.length lvs = 1 then (ec_leaks_lvs env lvs) @ [ec_assgn env (List.hd lvs) (List.hd etyso, List.hd etysi) e] else ec_assgn_f env lvs etyso etysi (fun lvals -> ESasgn (lvals, e)) let ec_syscall env o = match o with | Syscall_t.RandomBytes p -> let n = (Conv.int_of_pos p) in Env.add_randombytes env n; Format.sprintf "%s.randombytes_%i" syscall_mod_arg n let ec_opn pd asmOp o = let s = Format.asprintf "%a" (pp_opn pd asmOp) o in if Ss.mem s keywords then s^"_" else s let rec toec_cmd asmOp env c = List.flatten (List.map (toec_instr asmOp env) c) and toec_instr asmOp env i = match i.i_desc with | Cassgn (lv, _, _, (Parr_init _ as e)) -> (ec_leaks_es env [e]) @ [toec_lval1 env lv (ec_ident "witness")] | Cassgn (lv, _, _, e) -> let tys = [ty_expr e] in (ec_leaks_es env [e]) @ ec_expr_assgn env [lv] tys tys (toec_expr env e) | Copn ([], _, op, es) -> (ec_leaks_opn env es) @ [EScomment (Format.sprintf "Erased call to %s" (ec_opn (Env.pd env) asmOp op))] | Copn (lvs, _, op, es) -> let op' = base_op op in (* Since we do not have merge for the moment only the output type can change *) let otys,itys = ty_sopn (Env.pd env) asmOp op es in let otys', _ = ty_sopn (Env.pd env) asmOp op' es in let ec_op op = ec_ident (ec_opn (Env.pd env) asmOp op) in let ec_e op = Eapp (ec_op op, List.map (toec_cast env) (List.combine itys es)) in (ec_leaks_opn env es) @ (ec_expr_assgn env lvs otys otys' (ec_e op')) | Ccall (lvs, f, es) -> let env = Env.new_aux_range env in let otys, itys = Env.get_funtype env f in let args = List.map (toec_cast env) (List.combine itys es) in let leak_lvs = ec_leak_call_lvs env in (ec_leaks_es env es) @ (ec_pcall env lvs leak_lvs otys [Env.get_funname env f] args) @ (ec_leak_call_acc env) | Csyscall (lvs, o, es) -> let s = Syscall.syscall_sig_u o in let otys = List.map Conv.ty_of_cty s.scs_tout in let itys = List.map Conv.ty_of_cty s.scs_tin in let args = List.map (toec_cast env) (List.combine itys es) in (ec_leaks_es env es) @ (ec_pcall env lvs [] otys [ec_syscall env o] args) | Cif (e, c1, c2) -> let c1 env = toec_cmd asmOp env c1 in let c2 env = toec_cmd asmOp env c2 in ec_leaking_if env e c1 c2 | Cwhile (_, c1, e, _, c2) -> let c1 env = toec_cmd asmOp env c1 in let c2 env = toec_cmd asmOp env c2 in ec_leaking_while env c1 e c2 | Cfor (i, (d,e1,e2), c) -> let env = Env.new_aux_range env in (* decreasing for loops have bounds swaped *) let e1, e2 = if d = UpTo then e1, e2 else e2, e1 in let init, ec_e2 = match e2 with (* Can be generalized to the case where e2 is not modified by c and i *) | Pconst _ -> ([], toec_expr env e2) | _ -> let aux = Env.create_aux env "inc" "int" in let init = ESasgn ([LvIdent [aux]], toec_expr env e2) in let ec_e2 = ec_ident aux in [init], ec_e2 in let ec_i = [ec_vars env (L.unloc i)] in let lv_i = [LvIdent ec_i] in let init = init @ [ESasgn (lv_i, toec_expr env e1)] in let ec_i1, ec_i2 = if d = UpTo then Eident ec_i , ec_e2 else ec_e2, Eident ec_i in let i_upd_op = Infix (if d = UpTo then "+" else "-") in let i_upd = [ESasgn (lv_i, Eop2 (i_upd_op, Eident ec_i, Econst (Z.of_int 1)))] in let c env = toec_cmd asmOp env c in let cond = Eop2 (Infix "<", ec_i1, ec_i2) in ec_leaking_for env c e1 e2 init cond i_upd (* ------------------------------------------------------------------- *) (* Function extraction *) let var2ec_var env x = (List.hd [ec_vars env x], toec_ty env x.v_ty) let toec_fun asmOp env f = let f = { f with f_body = remove_for f.f_body } in let locals = Sv.elements (locals f) in let env = List.fold_left Env.set_var env (f.f_args @ locals) in (* Limit the scope of changes for aux variables to the current function. *) let env = Env.new_fun env in let init = ec_fun_leak_init env in let stmts = init @ (toec_cmd asmOp env f.f_body) in let ec_locals = (Env.aux_vars env) @ (List.map (var2ec_var env) locals) in let aux_locals_init = locals |> List.filter (fun x -> match x.v_ty with Arr _ -> true | _ -> false) |> List.sort (fun x1 x2 -> compare x1.v_name x2.v_name) |> List.map (fun x -> ESasgn ([LvIdent [ec_vars env x]], ec_ident "witness")) in let ret = let ec_var x = ec_vari env (L.unloc x) in match ec_leak_ret env (List.map ec_var f.f_ret) with | [x] -> ESreturn x | xs -> ESreturn (Etuple xs) in List.iter (Env.add_ty env) f.f_tyout; List.iter (fun x -> Env.add_ty env x.v_ty) (f.f_args @ locals); { decl = { fname = (Env.get_funname env f.f_name); args = List.map (var2ec_var env) f.f_args; rtys = ec_leak_rty env (List.map (toec_ty env) f.f_tyout); }; locals = ec_locals; stmt = aux_locals_init @ stmts @ [ret]; } (* ------------------------------------------------------------------- *) (* Program extraction *) let add_glob_arrsz env (x,d) = match d with | Global.Gword _ -> () | Global.Garr(p,t) -> let ws, t = Conv.to_array x.v_ty p t in let n = Array.length t in Env.add_jarray env ws n let jmodel env = match Env.arch env with | X86_64 -> "JModel_x86" | ARM_M4 -> "JModel_m4" | RISCV -> "JModel_riscv" let lib_slh env = match Env.arch env with | X86_64 -> "SLH64" | ARM_M4 -> "SLH32" | RISCV -> "SLH32" let ec_glob_decl env (x,d) = let w_of_z ws z = Eapp (Eident [fmt_Wsz ws; "of_int"], [Econst z]) in let mk_abbrev e = Iabbrev (ec_vars env x, e) in match d with | Global.Gword(ws, w) -> mk_abbrev (w_of_z ws (Conv.z_of_word ws w)) | Global.Garr(p,t) -> let ws, t = Conv.to_array x.v_ty p t in mk_abbrev (Eapp (EA.of_list env ws (Array.length t), [Elist (List.map (w_of_z ws) (Array.to_list t))])) let ec_randombytes env = let randombytes_decl a n = let arr_ty = toec_ty env (Arr (U8, n)) in { fname = Format.sprintf "randombytes_%i" n; args = [(a, arr_ty)]; rtys = [arr_ty]; } in let randombytes_f n = let dmap = EA.ec_darray8 env n in { decl = randombytes_decl "a" n ; locals = [] ; stmt = [ESsample ([LvIdent ["a"]], dmap); ESreturn (ec_ident "a")] } in let randombytes = Env.randombytes env in if List.is_empty randombytes then [] else [ ImoduleType { name = syscall_mod_sig; funs = List.map (randombytes_decl "_") randombytes; }; Imodule { name = syscall_mod; params = []; ty = Some syscall_mod_sig; vars = []; funs = List.map randombytes_f randombytes; } ] let toec_prog env asmOp globs funcs = let add_glob_env env (x, d) = add_glob_arrsz env (x, d); Env.set_var env x in let add_arrsz env f = let add env x = match x.v_ty with | Arr(ws, n) -> EA.add_jarray env ws n | _ -> () in let vars = vars_fc f in Sv.iter (add env) vars in let env = List.fold_left Env.set_fun env funcs in let env = List.fold_left add_glob_env env globs in List.iter (add_arrsz env) funcs; let funs = List.map (toec_fun asmOp env) funcs in let pp_array_theories ats = match Sarraytheory.elements ats with | [] -> [] | l -> [IrequireImport (List.map fmt_array_theory l)] in let mod_arg = if List.is_empty (Env.randombytes env) then [] else [(syscall_mod_arg, syscall_mod_sig)] in let glob_imports = [ IrequireImport ["AllCore"; "IntDiv"; "CoreMap"; "List"; "Distr"]; IfromRequireImport ("Jasmin", [jmodel env]); Iimport [lib_slh env]; ] in let top_mod = Imodule { name = "M"; params = mod_arg; ty = None; vars = global_leakage_vars env; funs; } in glob_imports @ (leakage_imports env) @ pp_array_theories (Env.array_theories env) @ (List.map (fun glob -> ec_glob_decl env glob) globs) @ (ec_randombytes env) @ [top_mod] let pp_prog env asmOp fmt globs funcs = Format.fprintf fmt "%a@." pp_ec_prog (toec_prog env asmOp globs funcs) end (* ------------------------------------------------------------------- *) (* Program extraction: find used functions and setup env data. *) let rec used_func f = used_func_c Ss.empty f.f_body and used_func_c used c = List.fold_left used_func_i used c and used_func_i used i = match i.i_desc with | Cassgn _ | Copn _ | Csyscall _ -> used | Cif (_,c1,c2) -> used_func_c (used_func_c used c1) c2 | Cfor(_,_,c) -> used_func_c used c | Cwhile(_, c1, _, _, c2) -> used_func_c (used_func_c used c1) c2 | Ccall (_,f,_) -> Ss.add f.fn_name used let extract ((globs,funcs):('info, 'asm) prog) arch pd asmOp (model: model) amodel fnames array_dir fmt = let save_array_theories array_theories = match array_dir with | Some prefix -> begin Sarraytheory.iter (save_array_theory ~prefix) array_theories end | None -> () in let fnames = match fnames with | [] -> List.map (fun { f_name ; _ } -> f_name.fn_name) funcs | fnames -> fnames in let funcs = List.map Regalloc.fill_in_missing_names funcs in let tokeep = ref (Ss.of_list fnames) in let dofun f = if Ss.mem f.f_name.fn_name !tokeep then (tokeep := Ss.union (used_func f) !tokeep; true) else false in let funcs = List.rev (List.filter dofun funcs) in let array_theories = ref Sarraytheory.empty in let env = Env.empty arch pd array_theories in let module EA: EcArray = (val match amodel with | ArrayOld -> (module EcArrayOld: EcArray) | WArray -> (module EcWArray : EcArray) | BArray -> (module EcBArray : EcArray) ) in let module EE = EcExpression(EA) in let module EL: EcLeakage = (val match model with | Normal -> (module EcLeakNormal(EE): EcLeakage) | ConstantTime -> (module EcLeakConstantTime(EE): EcLeakage) | ConstantTimeGlobal -> warning Deprecated Location.i_dummy "EasyCrypt extraction for constant-time in CTG mode is deprecated. Use the CT mode instead."; (module EcLeakConstantTimeGlobal(EE): EcLeakage) ) in let module E = Extraction(EA)(EL) in let prog = E.pp_prog env asmOp fmt globs funcs in save_array_theories (Env.array_theories env); prog
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>