package jasmin
Compiler for High-Assurance and High-Speed Cryptography
Install
dune-project
Dependency
Authors
Maintainers
Sources
jasmin-compiler-v2025.06.1.tar.bz2
sha256=e92b42fa69da7c730b0c26dacf842a72b4febcaf4f2157a1dc18b3cce1f859fa
doc/jasmin.jasmin/Jasmin/Utils0/index.html
Module Jasmin.Utils0
type __ = Obj.t
module FinIsCount : sig ... end
val beq : 'a1 eqTypeC -> 'a1 -> 'a1 -> bool
val ceqP : 'a1 eqTypeC -> 'a1 Eqtype.eq_axiom
module EqType : sig ... end
val ceqT_eqType : 'a1 eqTypeC -> Eqtype.Equality.coq_type
val cenum : 'a1 finTypeC -> 'a1 list
module FinType : sig ... end
val cfinT_finType : 'a1 finTypeC -> Fintype.Finite.coq_type
module FinMap : sig ... end
val reflect_inj :
Eqtype.Equality.coq_type ->
(Eqtype.Equality.sort -> 'a1) ->
Eqtype.Equality.sort ->
Eqtype.Equality.sort ->
Bool.reflect ->
Bool.reflect
val is_ok : ('a1, 'a2) result -> bool
val is_okP : ('a1, 'a2) result -> Bool.reflect
module Result : sig ... end
val o2r : 'a1 -> 'a2 option -> ('a1, 'a2) result
val coq_assert : bool -> 'a1 -> ('a1, unit) result
val mapMP :
Eqtype.Equality.coq_type ->
Eqtype.Equality.coq_type ->
(Eqtype.Equality.sort -> ('a1, Eqtype.Equality.sort) result) ->
Eqtype.Equality.sort list ->
Eqtype.Equality.sort list ->
Eqtype.Equality.sort ->
Bool.reflect
val all2P : ('a1 -> 'a2 -> bool) -> 'a1 list -> 'a2 list -> Bool.reflect
val reflect_all2_eqb :
('a1 -> 'a1 -> bool) ->
('a1 -> 'a1 -> Bool.reflect) ->
'a1 list ->
'a1 list ->
Bool.reflect
val mapi_aux :
(Datatypes.nat -> 'a1 -> 'a2) ->
Datatypes.nat ->
'a1 list ->
'a2 list
val mapi : (Datatypes.nat -> 'a1 -> 'a2) -> 'a1 list -> 'a2 list
val isSome_obind : ('a1 -> 'a2 option) -> 'a1 option -> Bool.reflect
val list_to_rev : Datatypes.nat -> Datatypes.nat list
val list_to : Datatypes.nat -> Datatypes.nat list
val ctrans :
Datatypes.comparison ->
Datatypes.comparison ->
Datatypes.comparison option
val coq_HB_unnamed_factory_14 :
Datatypes.comparison Eqtype.Coq_hasDecEq.axioms_
val coq_Datatypes_comparison__canonical__eqtype_Equality :
Eqtype.Equality.coq_type
val gcmp :
('a1 -> 'a1 -> Datatypes.comparison) ->
'a1 ->
'a1 ->
Datatypes.comparison
val cmp_lt : ('a1 -> 'a1 -> Datatypes.comparison) -> 'a1 -> 'a1 -> bool
val cmp_le : ('a1 -> 'a1 -> Datatypes.comparison) -> 'a1 -> 'a1 -> bool
val lex :
('a1 -> 'a1 -> Datatypes.comparison) ->
('a2 -> 'a2 -> Datatypes.comparison) ->
('a1 * 'a2) ->
('a1 * 'a2) ->
Datatypes.comparison
val cmp_min : ('a1 -> 'a1 -> Datatypes.comparison) -> 'a1 -> 'a1 -> 'a1
val cmp_max : ('a1 -> 'a1 -> Datatypes.comparison) -> 'a1 -> 'a1 -> 'a1
val bool_cmp : bool -> bool -> Datatypes.comparison
val subrelation_iff_flip_arrow :
(__, __) CRelationClasses.iffT ->
(__, __) CRelationClasses.arrow
val reflect_m : bool -> bool -> (__, __) CRelationClasses.iffT
val coq_P_leP : BinNums.positive -> BinNums.positive -> Bool.reflect
val coq_P_ltP : BinNums.positive -> BinNums.positive -> Bool.reflect
type is_positive =
| Coq_is_xI of BinNums.positive * is_positive
| Coq_is_xO of BinNums.positive * is_positive
| Coq_is_xH
val is_positive_rect :
(BinNums.positive -> is_positive -> 'a1 -> 'a1) ->
(BinNums.positive -> is_positive -> 'a1 -> 'a1) ->
'a1 ->
BinNums.positive ->
is_positive ->
'a1
val is_positive_rec :
(BinNums.positive -> is_positive -> 'a1 -> 'a1) ->
(BinNums.positive -> is_positive -> 'a1 -> 'a1) ->
'a1 ->
BinNums.positive ->
is_positive ->
'a1
val positive_tag : BinNums.positive -> BinNums.positive
val is_positive_inhab : BinNums.positive -> is_positive
val is_positive_functor : BinNums.positive -> is_positive -> is_positive
type box_positive_xI = BinNums.positive
val coq_Box_positive_xI_0 : box_positive_xI -> BinNums.positive
type positive_fields_t = __
val positive_fields : BinNums.positive -> positive_fields_t
val positive_construct :
BinNums.positive ->
positive_fields_t ->
BinNums.positive option
val positive_induction :
(BinNums.positive -> 'a1 -> 'a1) ->
(BinNums.positive -> 'a1 -> 'a1) ->
'a1 ->
BinNums.positive ->
is_positive ->
'a1
val positive_eqb_fields :
(BinNums.positive -> BinNums.positive -> bool) ->
BinNums.positive ->
positive_fields_t ->
positive_fields_t ->
bool
val positive_eqb : BinNums.positive -> BinNums.positive -> bool
val positive_eqb_OK : BinNums.positive -> BinNums.positive -> Bool.reflect
val positive_eqb_OK_sumbool : BinNums.positive -> BinNums.positive -> bool
val coq_HB_unnamed_factory_16 : BinNums.positive Eqtype.Coq_hasDecEq.axioms_
val coq_BinNums_positive__canonical__eqtype_Equality : Eqtype.Equality.coq_type
val coq_ZleP : BinNums.coq_Z -> BinNums.coq_Z -> Bool.reflect
val coq_ZltP : BinNums.coq_Z -> BinNums.coq_Z -> Bool.reflect
val coq_ZNleP : Datatypes.nat -> Datatypes.nat -> Bool.reflect
val coq_ZNltP : Datatypes.nat -> Datatypes.nat -> Bool.reflect
val ziota_rec : BinNums.coq_Z -> BinNums.coq_Z -> BinNums.coq_Z list
val ziota : BinNums.coq_Z -> BinNums.coq_Z -> BinNums.coq_Z list
val pnth : 'a1 -> 'a1 list -> BinNums.positive -> 'a1
val znth : 'a1 -> 'a1 list -> BinNums.coq_Z -> 'a1
val zindex :
Eqtype.Equality.coq_type ->
Eqtype.Equality.sort ->
Eqtype.Equality.sort list ->
BinNums.coq_Z
type 'tr lprod = __
type ltuple = __
module Option : sig ... end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>