package jasmin
Compiler for High-Assurance and High-Speed Cryptography
Install
dune-project
Dependency
Authors
Maintainers
Sources
jasmin-compiler-v2025.06.1.tar.bz2
sha256=e92b42fa69da7c730b0c26dacf842a72b4febcaf4f2157a1dc18b3cce1f859fa
doc/src/jasmin.jasmin/regalloc.ml.html
Source file regalloc.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
open Utils open Wsize open Sopn open Prog module IntSet = Sint module IntMap = Mint let hierror = hierror ~kind:"compilation error" let hierror_reg = hierror ~sub_kind:"register allocation" let debug () = !Glob_options.debug || !Glob_options.verbosity > 0 let pp_var fmt = Printer.pp_var fmt ~debug:(debug()) let make_counter () = let count = ref 0 in (fun () -> let n = !count in incr count; n), (fun () -> !count) let fill_in_missing_names (f: ('info, 'asm) func) : ('info, 'asm) func = let fresh_name : L.t -> ty -> var_i = let fresh, _ = make_counter () in fun loc ty -> let n = Printf.sprintf " _%d" (fresh ()) in L.mk_loc loc (V.mk n (Reg(Normal, Direct)) ty L._dummy []) in let fill_lv = function | Lnone(p, ty) -> Lvar (fresh_name p ty) | x -> x in let fill_lvs lvs = List.map fill_lv lvs in let rec fill_instr_r = function | Cassgn (lv, tg, ty, e) -> Cassgn (fill_lv lv, tg, ty, e) | Copn (lvs, tg, op, es) -> Copn (fill_lvs lvs, tg, op, es) | Csyscall (lvs, op, es) -> Csyscall(fill_lvs lvs, op, es) | Cif (e, s1, s2) -> Cif (e, fill_stmt s1, fill_stmt s2) | Cfor (i, r, s) -> Cfor (i, r, fill_stmt s) | Cwhile (a, s, e, loc, s') -> Cwhile (a, fill_stmt s, e, loc, fill_stmt s') | Ccall (lvs, f, es) -> Ccall (fill_lvs lvs, f, es) and fill_instr i = { i with i_desc = fill_instr_r i.i_desc } and fill_stmt s = List.map fill_instr s in let f_body = fill_stmt f.f_body in { f with f_body } type kind = Word | Extra | Vector | Flag | Unknown of ty let string_of_kind = function | Word -> "general purpose" | Extra -> "extra (aka mmx)" | Vector -> "vector" | Flag -> "flag" | Unknown ty -> Format.asprintf "(unknown of type %a)" PrintCommon.pp_ty ty let kind_of_type reg_size k = function | Bty (U sz) -> if Wsize.wsize_cmp sz reg_size = Datatypes.Gt then Vector else if reg_kind k = Normal then Word else Extra | Bty Bool -> Flag | ty -> Unknown ty (* Only variables that will be allocated to the same “bank” may conflict. *) let types_cannot_conflict reg_size kx x ky y : bool = match kind_of_type reg_size kx x, kind_of_type reg_size ky y with | Word, Word | Extra, Extra | Vector, Vector | Flag, Flag -> false | _, _ -> true let find_equality_constraints (id: instruction_desc) : arg_position list list = let tbl : (int, arg_position list) Hashtbl.t = Hashtbl.create 17 in let set n p = let old = try Hashtbl.find tbl n with Not_found -> [] in Hashtbl.replace tbl n (p :: old) in List.iteri (fun n -> function | ADImplicit _ -> () | ADExplicit (p, _) -> set (Conv.int_of_nat p) (APout (Conv.nat_of_int n))) id.i_out; List.iteri (fun n -> function | ADImplicit _ -> () | ADExplicit (p, _) -> set (Conv.int_of_nat p) (APin (Conv.nat_of_int n))) id.i_in; Hashtbl.fold (fun _ apl res -> match apl with | [] | [ _ ] -> res | _ -> apl :: res) tbl [] let find_var outs ins ap : _ option = let oget = function | Some x -> x | None -> hierror_reg ~loc:Lnone ~internal:true "the instruction description is not correct" in match ap with | APout n -> Oseq.onth outs n |> oget |> (function Lvar v -> Some v | _ -> None) | APin n -> Oseq.onth ins n |> oget |> (function | Pvar v -> if is_gkvar v then Some v.gv else None | _ -> None) let asm_equality_constraints ~loc pd reg_size asmOp is_move_op (int_of_var: var_i -> int option) (k: int -> int -> unit) (k': int -> int -> unit) (lvs: 'ty glvals) (op: 'asm sopn) (es: 'ty gexprs) : unit = let assert_compatible_types x y = let x = L.unloc x and y = L.unloc y in if types_cannot_conflict reg_size x.v_kind x.v_ty y.v_kind y.v_ty then hierror_reg ~loc "Variables %a and %a must be merged due to architectural constraints but must be allocated to incompatible banks “%s” and “%s” (respectively)" pp_var x pp_var y (string_of_kind (kind_of_type reg_size x.v_kind x.v_ty)) (string_of_kind (kind_of_type reg_size y.v_kind y.v_ty)) in let merge k v w = assert_compatible_types v w; match int_of_var v with | None -> () | Some i -> match int_of_var w with | None -> () | Some j -> k i j in begin match op, lvs, es with | Oasm op, [ Lvar x ], [ Pvar y ] when is_move_op op && is_gkvar y && kind_i x = kind_i y.gv -> merge k' x y.gv | _, _, _ -> let id = get_instr_desc pd asmOp op in find_equality_constraints id |> List.iter (fun constr -> constr |> List.filter_map (find_var lvs es) |> function | [] | [ _ ] -> () | x :: m -> List.iter (merge k x) m ) end (* Set of instruction information for each variable equivalence class. *) type ('info, 'asm) trace = (int, ('info, 'asm) instr list) Hashtbl.t let pp_trace pd asmOp (i: int) fmt (tr: ('info, 'asm) trace) = match Hashtbl.find tr i with | exception Not_found -> () | j -> let pp_i_noloc = Printer.pp_instr ~debug:(debug()) pd asmOp in let pp_i fmt i = Format.fprintf fmt "@[<v>at %a:@;<1 2>%a@]" L.pp_iloc i.i_loc pp_i_noloc i in let j_noloc, j_loc = List.partition (fun i -> L.isdummy i.i_loc.base_loc) j in Format.fprintf fmt "@[<v>%a@]" (pp_list "@ " pp_i) j_loc; if j_noloc <> [] then Format.fprintf fmt "@;<1 2>and:@;<1 4>@[<v>%a@]" (pp_list "@ " pp_i_noloc) j_noloc let normalize_trace (eqc: Puf.t) (tr: ('info, 'asm) instr list array) : ('info, 'asm) trace = let tbl = Hashtbl.create 97 in let old i = try Hashtbl.find tbl i with Not_found -> [] in let union x y = List.sort_uniq compare (List.rev_append x y) in Array.iteri (fun i s -> let j = Puf.find eqc i in Hashtbl.replace tbl j (union s (old j)) ) tr; tbl type friend = IntSet.t IntMap.t let get_friend (i: int) (f: friend) : IntSet.t = IntMap.find_default IntSet.empty i f let set_friend i j (f: friend) : friend = f |> IntMap.modify_def IntSet.empty i (IntSet.add j) |> IntMap.modify_def IntSet.empty j (IntSet.add i) type ('info, 'asm) collect_equality_constraints_state = { mutable cac_friends : friend; mutable cac_eqc: Puf.t ; cac_trace: ('info, 'asm) instr list array } (* Renaming assignments can be removed between variables of compatible kinds, where “compatibility” is defined below and allows the promotion of mutable pointers to constant pointers. *) let pointer_compatible (x: reference) (y: reference) : bool = match x, y with | Direct, Direct | Pointer Writable, Pointer Writable | Pointer Constant, Pointer _ -> true | Direct, Pointer _ | Pointer _, Direct | Pointer Writable, Pointer Constant -> false let kind_compatible (x: v_kind) (y: v_kind) : bool = match x, y with | Const, Const | Inline, Inline | Global, Global -> true | Stack a, Stack b | Reg (Normal, a), Reg (Normal, b) | Reg (Extra, a), Reg (Extra, b) -> pointer_compatible a b | _, _ -> false let collect_equality_constraints_in_func (asmOp:'asm Sopn.asmOp) is_move_op ~(with_call_sites: (funname -> ('info, 'asm) func) option) (msg: string) (tbl: int Hv.t) (nv: int) (get_live_out: 'info -> Sv.t) copn_constraints (s: ('info, 'asm) collect_equality_constraints_state) (f: ('info, 'asm) func) : unit = (* This proceeds in two passes over the instructions of the function f The first pass: - collects constraints from opn (architecture-specific) - marks as equal variables that are φ-congruent - remembers the set of “renaming assignments” introduced by inlining - marks as friends variables involved in other renaming-like instructions - marks as equal variables involved in function calls & returns The second pass checks that renaming can safely be removed *) let int_of_var x = Hv.find_option tbl (L.unloc x) in let add ii x y = s.cac_trace.(x) <- ii :: s.cac_trace.(x); s.cac_eqc <- Puf.union s.cac_eqc x y in let addv ii x y = match int_of_var x, int_of_var y with | Some i, Some j -> add ii i j | (None, _) | (_, None) -> () in let addf i j = s.cac_friends <- set_friend i j s.cac_friends in let names = ref (Puf.create nv) in let renames = ref [] in let first_pass ii = match ii.i_desc with | Copn (lvs, _, op, es) -> copn_constraints ~loc:(Lmore ii.i_loc) asmOp is_move_op int_of_var (add ii) addf lvs op es | Cassgn (Lvar x, AT_phinode, _, Pvar y) when is_gkvar y && kind_i x = kind_i y.gv -> names := Puf.union !names (Hv.find tbl (L.unloc y.gv)) (Hv.find tbl (L.unloc x)); addv ii x y.gv | Cassgn (Lvar x, AT_rename, _, Pvar y) when is_gkvar y && kind_compatible (kind_i x) (kind_i y.gv) && not (is_stack_array x) -> renames := (ii, x, y.gv) :: !renames | Cassgn (Lvar x, _, _, Pvar y) when is_gkvar y && kind_i x = kind_i y.gv && not (is_stack_array x) -> begin match int_of_var x, int_of_var y.gv with | Some i, Some j -> addf i j | (None, _) | (_, None) -> () end | Cassgn _ -> () | Ccall (xs, fn, es) -> let get_Pvar a = match a with | Pvar { gs = Expr.Slocal ; gv } -> gv | _ -> hierror ~loc:(Lmore ii.i_loc) ~sub_kind:msg ~internal:true "argument is not a local variable" in let get_Lvar x = match x with | Lvar v -> v | _ -> hierror ~loc:(Lmore ii.i_loc) ~sub_kind:msg ~internal:true "return destination is not a variable" in begin match with_call_sites with | None -> () | Some get_func -> let g = get_func fn in List.iter2 (fun a p -> addv ii (get_Pvar a) Location.(mk_loc _dummy p)) es g.f_args; List.iter2 (fun r x -> addv ii r (get_Lvar x)) g.f_ret xs end | Csyscall _ | Cfor _ | Cif _ | Cwhile _-> () in iter_instr first_pass f.f_body; (* Checks whether it is safe to remove a “renaming” copy from y to x (i.e., x = y) at position ii. It looks for assignments (distinct from ii) that assign x (or an alias) after which y is live. *) let renames = !renames in let phi_aliases = !names in let checked_renamings = Hiloc.create 17 in let second_pass { i_desc; i_info; i_loc; _ } = let live_out = get_live_out i_info in List.iter (fun (ii, x, y) -> if Sv.mem (L.unloc y) live_out then let ii = ii.i_loc in let intersects = let x = Puf.find phi_aliases (Hv.find tbl (L.unloc x)) in Sv.exists (fun z -> x = Puf.find phi_aliases (Hv.find tbl z)) in if i_loc.uid_loc <> ii.L.uid_loc && intersects (assigns i_desc) then Hiloc.modify_def [] ii (List.cons i_loc) checked_renamings ) renames in iter_instr second_pass f.f_body; List.iter (fun (ii, x, y) -> match Hiloc.find_default checked_renamings ii.i_loc [] with | [] -> addv ii x y | warnings -> let warnings = List.filter (fun ii -> not L.(isdummy ii.base_loc)) warnings in warning KeptRenaming ii.i_loc "Cannot elide renaming of %a to %a due to the following assignment%s:%a" pp_var (L.unloc y) pp_var (L.unloc x) (match warnings with [ _ ] -> "" | _ -> "s") (pp_list "\n" Location.pp_iloc) warnings ) renames let normalize_friend (eqc: Puf.t) (fr: friend) : friend = IntMap.filter_map ( fun k f -> if Stdlib.Int.equal k (Puf.find eqc k) then Some (IntSet.map (Puf.find eqc) f) else None ) fr let collect_equality_constraints asmOp is_move_op (msg: string) copn_constraints (tbl: int Hv.t) (nv: int) (f: (Sv.t * Sv.t, 'asm) func) : Puf.t = let s = { cac_friends = IntMap.empty ; cac_eqc = Puf.create nv ; cac_trace = Array.make nv [] } in collect_equality_constraints_in_func asmOp is_move_op ~with_call_sites:None msg tbl nv snd copn_constraints s f; s.cac_eqc let collect_equality_constraints_in_prog asmOp is_move_op (msg: string) copn_constraints (tbl: int Hv.t) (nv: int) (f: ('info, 'asm) func list) : Puf.t * ('info, 'asm) trace * friend = let s = { cac_friends = IntMap.empty ; cac_eqc = Puf.create nv ; cac_trace = Array.make nv [] } in let ftbl = Hf.create 17 in let get_var n = Hf.find ftbl n in let () = List.fold_right (fun f () -> Hf.add ftbl f.f_name f; collect_equality_constraints_in_func asmOp is_move_op ~with_call_sites:(Some get_var) msg tbl nv (fun _ -> Sv.empty) copn_constraints s f) f () in let eqc = s.cac_eqc in eqc, normalize_trace eqc s.cac_trace, normalize_friend eqc s.cac_friends (* Conflicting variables: variables that may be live simultaneously and thus must be allocated to distinct registers. The set of conflicts is represented by a map from variables to the set of variables they are conflicting with. Variables are represented by their equivalence class (equality constraints mandated by the architecture). *) module Conflicts : sig type conflicts val empty_conflicts : conflicts val get_conflicts : int -> conflicts -> IntSet.t val add_conflicts : int -> int -> conflicts -> conflicts end = struct type conflicts = IntSet.t IntMap.t let empty_conflicts = IntMap.empty let get_conflicts (v: int) (c: conflicts) : IntSet.t = IntMap.find_default IntSet.empty v c let add_conflicts (v: int) (w: int) (c: conflicts) : conflicts = IntMap.modify_opt v (function | None -> Some (IntSet.singleton w) | Some x -> Some (IntSet.add w x) ) c end open Conflicts let conflicts_in (i: Sv.t) (k: var -> var -> 'a -> 'a) : 'a -> 'a = let e = Sv.elements i in let rec loop a = function | [] -> a | x :: xs -> let rec inner a = function | [] -> a | y :: ys -> inner (k x y a) ys in loop (inner a xs) xs in fun a -> loop a e let conflicts_add_one pd reg_size asmOp tbl tr loc (v: var) (w: var) (c: conflicts) : conflicts = try let i = Hv.find tbl v in let j = Hv.find tbl w in if i = j then hierror_reg ~loc:loc "conflicting variables “%a” and “%a” must be merged due to:@;<1 2>%a" pp_var v pp_var w (pp_trace pd asmOp i) tr; if types_cannot_conflict reg_size v.v_kind v.v_ty w.v_kind w.v_ty then c else c |> add_conflicts i j |> add_conflicts j i with Not_found -> c (* Some instructions can declare conflicts between the registers appearing in the arguments and in the result. We collect all these conflicts. *) let collect_opn_conflicts pd reg_size asmOp (tbl: int Hv.t) (tr: ('info, 'asm) trace) (f: ('info, 'asm) func list) (c: conflicts) : conflicts = let add_one = conflicts_add_one pd reg_size asmOp tbl tr in let rec collect_opn_conflicts_instr c i = begin match i.i_desc with | Copn (lvs, _, op, es) -> let id = get_instr_desc reg_size asmOp op in let conflicts = id.conflicts in List.fold_left (fun c (a1, a2) -> match find_var lvs es a1, find_var lvs es a2 with | Some x1, Some x2 -> add_one (Lmore i.i_loc) (L.unloc x1) (L.unloc x2) c | _, _ -> c) c conflicts | Cfor (_, _, s) -> collect_opn_conflicts_stmt c s | Cif (_, s1, s2) | Cwhile (_, s1, _, _, s2) -> let c = collect_opn_conflicts_stmt c s1 in collect_opn_conflicts_stmt c s2 | _ -> c end and collect_opn_conflicts_stmt c s = List.fold_left (fun c i -> collect_opn_conflicts_instr c i) c s in List.fold_left (fun c f -> collect_opn_conflicts_stmt c f.f_body) c f let collect_conflicts pd reg_size asmOp (tbl: int Hv.t) (tr: ('info, 'asm) trace) (f: (Sv.t * Sv.t, 'asm) func) (c: conflicts) : conflicts = let add_one = conflicts_add_one pd reg_size asmOp tbl tr in let add (c: conflicts) loc ((i, j): (Sv.t * Sv.t)) : conflicts = c |> conflicts_in i (add_one loc) |> conflicts_in j (add_one loc) in let rec collect_instr_r c = function | Cfor (_, _, s) -> collect_stmt c s | Cassgn _ | Copn _ | Csyscall _ | Ccall _ -> c | Cwhile (_, s1, _, _, s2) | Cif (_, s1, s2) -> collect_stmt (collect_stmt c s1) s2 and collect_instr c { i_desc ; i_loc ; i_info } = collect_instr_r (add c (Lmore i_loc) i_info) i_desc and collect_stmt c s = List.fold_left collect_instr c s in (* function arguments do conflict with each other, even if they are not live *) let args = Sv.of_list f.f_args in let c = conflicts_in args (add_one Lnone) c in collect_stmt c f.f_body let iter_variables (cb: var -> unit) (f: ('info, 'asm) func) : unit = let iter_sv = Sv.iter cb in let iter_lv lv = vars_lv Sv.empty lv |> iter_sv in let iter_lvs lvs = List.fold_left vars_lv Sv.empty lvs |> iter_sv in let iter_expr e = vars_e e |> iter_sv in let iter_exprs es = vars_es es |> iter_sv in let rec iter_instr_r = function | Cassgn (lv, _, _, e) -> iter_lv lv; iter_expr e | (Ccall (lvs, _, es) | Copn (lvs, _, _, es)) | Csyscall(lvs, _ , es) -> iter_lvs lvs; iter_exprs es | (Cwhile (_, s1, e, _, s2) | Cif (e, s1, s2)) -> iter_expr e; iter_stmt s1; iter_stmt s2 | Cfor _ -> assert false and iter_instr { i_desc } = iter_instr_r i_desc and iter_stmt s = List.iter iter_instr s in iter_stmt f.f_body; List.iter cb f.f_args; List.iter (fun x -> cb (L.unloc x)) f.f_ret let collect_variables_cb ~(allvars: bool) (excluded: Sv.t) (fresh: unit -> int) (tbl: int Hv.t) (v: var) : unit = (* Remove sp and rip *) if allvars || (is_reg_kind v.v_kind && not (Sv.mem v excluded)) then if not (Hv.mem tbl v) then let n = fresh () in Hv.add tbl v n let collect_variables_aux ~(allvars: bool) (excluded: Sv.t) (fresh: unit -> int) (tbl: int Hv.t) (extra: Sv.t) (f: ('info, 'asm) func) : unit = let get v = collect_variables_cb ~allvars excluded fresh tbl v in iter_variables get f; Sv.iter get extra let collect_variables ~(allvars: bool) (excluded:Sv.t) (f: ('info, 'asm) func) : int Hv.t * int = let fresh, total = make_counter () in let tbl : int Hv.t = Hv.create 97 in collect_variables_aux ~allvars excluded fresh tbl Sv.empty f; tbl, total () (* TODO: should StackDirect be just StackByReg (None, None, None)? *) type retaddr = | StackDirect (* ra is passed on the stack and read from the stack *) | StackByReg of var * var option * var option (* StackByReg (ra_call, ra_return, tmp) *) | ByReg of var * var option (* ByReg (ra, tmp) *) let vars_retaddr ra = let oadd ov s = match ov with | None -> s | Some v -> Sv.add v s in match ra with | StackByReg (ra_call, ra_return, tmp) -> oadd tmp (oadd ra_return (Sv.singleton ra_call)) | ByReg (ra, tmp) -> oadd tmp (Sv.singleton ra) | StackDirect -> Sv.empty let collect_variables_in_prog ~(allvars: bool) (excluded: Sv.t) (return_addresses: retaddr Hf.t) (all_reg: var list) (f: ('info, 'asm) func list) : int Hv.t * int = let fresh, total = make_counter () in let tbl : int Hv.t = Hv.create 97 in List.iter (fun f -> let extra = vars_retaddr (Hf.find return_addresses f.f_name) in collect_variables_aux ~allvars excluded fresh tbl extra f) f; List.iter (collect_variables_cb ~allvars excluded fresh tbl) all_reg; tbl, total () let normalize_variables (tbl: int Hv.t) (eqc: Puf.t) : int Hv.t = let r = Hv.create 97 in Hv.iter (fun v n -> Hv.add r v (Puf.find eqc n)) tbl; r module A : sig type allocation val empty: int -> allocation val find: int -> allocation -> var option val rfind : var -> allocation -> IntSet.t val set: int -> var -> allocation -> unit val mem: int -> allocation -> bool end = struct type allocation = var option array * IntSet.t Hv.t let empty nv = Array.make nv None, Hv.create nv let find n (a, _) = a.(n) let rfind x (_, r) = Hv.find_default r x IntSet.empty let set n x (a, r) = Hv.modify_def IntSet.empty x (IntSet.add n) r; a.(n) <- Some x let mem n (a, _) = a.(n) <> None end let reverse_classes nv vars : Sv.t array = let classes : var list array = Array.make nv [] in Hv.iter (fun v i -> classes.(i) <- v :: classes.(i)) vars; Array.map Sv.of_list classes let get_conflict_set i (cnf: conflicts) (a: A.allocation) (x: var) : IntSet.t = IntSet.inter (get_conflicts i cnf) (A.rfind x a) let does_not_conflict i (cnf: conflicts) (a: A.allocation) (x: var) : bool = get_conflict_set i cnf a x |> IntSet.is_empty let allocate_one nv vars loc (cnf: conflicts) (x_:var) (x: int) (r: var) (a: A.allocation) : unit = match A.find x a with | Some r' when r' = r -> () | Some r' -> hierror_reg ~loc:(Lmore loc) "cannot allocate %a into %a, the variable is already allocated in %a" pp_var x_ pp_var r pp_var r' | None -> let c = get_conflict_set x cnf a r in if IntSet.is_empty c then A.set x r a else let regs = reverse_classes nv vars in let other = IntSet.fold (fun i -> Sv.union regs.(i)) c Sv.empty |> Sv.elements in hierror_reg ~loc:(Lmore loc) "variable %a must be allocated to register %a due to architectural constraints; this register already holds conflicting variable%s: %a" pp_var x_ (Printer.pp_var ~debug:false) r (match other with [ _ ] -> "" | _ -> "s") (pp_list "; " pp_var) other type reg_oracle_t = { (* The list of callee save registers that are modified by a call to the export function *) ro_to_save: var list; (* A register that can be used to save the rsp of export function *) ro_rsp: var option; (* How the return address is pass to the function *) ro_return_address: retaddr; } module type Regalloc = sig type extended_op val create_return_addresses : (('info, 'asm) sfundef -> Z.t) -> ('info, 'asm) sfundef list -> retaddr Hf.t val renaming : (unit, extended_op) func -> (unit, extended_op) func val subroutine_ra_by_stack : (unit, extended_op) func -> bool val get_reg_oracle : (('info, 'asm) func -> bool) -> (var -> var) -> (funname -> Sv.t) -> retaddr -> ('info, 'asm) func -> reg_oracle_t val alloc_prog : retaddr Hf.t -> ('a * (unit, extended_op) func) list -> (var -> var) * (funname -> Sv.t) * ('a * (unit, extended_op) func) list end module Regalloc (Arch : Arch_full.Arch) : Regalloc with type extended_op := (Arch.reg, Arch.regx, Arch.xreg, Arch.rflag, Arch.cond, Arch.asm_op, Arch.extra_op) Arch_extra.extended_op = struct let create_return_addresses get_internal_size (funcs: ('info, 'asm) sfundef list) : retaddr Hf.t = let return_addresses = Hf.create 17 in List.iter (fun ((e, f) as fd) -> let ra = match f.f_cc with | Export _ -> StackDirect | Internal -> assert false | Subroutine _ -> match Arch.callstyle with | Arch_full.StackDirect -> StackDirect | Arch_full.ByReg { call = oreg; return } -> let dfl = oreg <> None && has_call_or_syscall f.f_body in let r = V.mk ("ra_"^f.f_name.fn_name) (Reg(Normal,Direct)) (tu Arch.reg_size) f.f_loc [] in let rastack = match f.f_annot.retaddr_kind with | None -> dfl | Some k -> dfl || k = OnStack in (* Fixme: Add an option in Arch to say when the tmp reg is needed *) let tmp_needed = (* if ra is passed on the stack, the amount to add after the call is not the same as the amount to subtract before the call, we need to check both *) Arch.alloc_stack_need_extra (get_internal_size fd) || rastack && Arch.alloc_stack_need_extra (Z.sub (get_internal_size fd) (Z.of_int (size_of_ws Arch.reg_size))) in let tmp = if tmp_needed then let tmp = V.mk ("tmp_"^f.f_name.fn_name) (Reg(Normal,Direct)) (tu Arch.reg_size) f.f_loc [] in Some tmp else None in if rastack then let r_return = if return then let r_return = V.mk ("ra_"^f.f_name.fn_name) (Reg(Normal,Direct)) (tu Arch.reg_size) f.f_loc [] in Some r_return else None in StackByReg (r, r_return, tmp) else ByReg (r, tmp) in Hf.add return_addresses f.f_name ra) funcs; return_addresses let forced_registers loc nv (vars: int Hv.t) tr (cnf: conflicts) (lvs: 'ty glvals) (op: 'asm sopn) (es: 'ty gexprs) (a: A.allocation) : conflicts = let allocate_one x y a = let x = L.unloc x in if types_cannot_conflict Arch.reg_size x.v_kind x.v_ty y.v_kind y.v_ty then hierror_reg ~loc:(Lmore loc) "variable %a (declared at %a with type “%a”) must be allocated to register %a from an incompatible bank" (Printer.pp_var ~debug:true) x L.pp_sloc x.v_dloc PrintCommon.pp_ty x.v_ty (Printer.pp_var ~debug:false) y; let i = try Hv.find vars x with Not_found -> hierror_reg ~loc:(Lmore loc) "variable %a (declared at %a as “%a”) must be allocated to register %a but is unknown to the register allocator%s" (Printer.pp_var ~debug:true) x L.pp_sloc x.v_dloc PrintCommon.pp_kind x.v_kind (Printer.pp_var ~debug:false) y (if is_reg_kind x.v_kind then "" else " (consider declaring this variable as “reg”)") in allocate_one nv vars loc cnf x i y a in let mallocate_one x y a = match x with Pvar x when is_gkvar x -> allocate_one x.gv y a | _ -> () in let id = get_instr_desc Arch.reg_size Arch.asmOp op in List.iter2 (fun ad lv -> match ad with | ADImplicit v -> begin match lv with | Lvar w -> allocate_one w (Conv.var_of_cvar v) a | _ -> assert false end | ADExplicit _ -> ()) id.i_out lvs; let cnf = List.fold_left2 (fun cnf ad e -> match ad with | ADImplicit v | ADExplicit (_, ACR_exact v) -> mallocate_one e (Conv.var_of_cvar v) a; cnf | ADExplicit (_, (ACR_any)) -> cnf | ADExplicit (_, ACR_subset rs) -> let rs = List.rev_map Conv.var_of_cvar rs in match e with | Pvar x -> List.fold_left (fun cnf r -> conflicts_add_one Arch.pointer_data Arch.reg_size Arch.asmOp vars tr Lnone (L.unloc x.gv) r cnf ) cnf rs | _ -> cnf ) cnf id.i_in es in cnf let allocate_forced_registers return_addresses nv (vars: int Hv.t) tr (cnf: conflicts) (f: ('info, 'asm) func) (a: A.allocation) : conflicts = let split ~ctxt ~num = function | hd :: tl -> hd, tl | [] -> hierror_reg ~loc:(Lone f.f_loc) ~funname:f.f_name.fn_name "too many %s according to the ABI (only %d available on this architecture)" ctxt num in let alloc_from_list loc ~ctxt rs xs q vs : unit = let f x = Hv.find vars x in let num_rs = List.length rs in let num_xs = List.length xs in List.fold_left (fun (rs, xs) p -> let p = q p in match f p with | i -> let d, rs, xs = match kind_of_type Arch.reg_size p.v_kind p.v_ty with | Word -> let d, rs = split ~ctxt ~num:num_rs rs in d, rs, xs | Vector -> let ctxt = "large " ^ ctxt in let d, xs = split ~ctxt ~num:num_xs xs in d, rs, xs | Extra -> hierror_reg ~loc:(Lmore loc) "unexpected extra register %a" pp_var p | Flag -> hierror_reg ~loc:(Lmore loc) "unexpected flag register %a" pp_var p | Unknown ty -> hierror_reg ~loc:(Lmore loc) "unknown type %a for forced register %a" PrintCommon.pp_ty ty (Printer.pp_var ~debug:true) p in allocate_one nv vars loc cnf p i d a; (rs, xs) | exception Not_found -> (rs, xs)) (rs, xs) vs |> (ignore : var list * var list -> unit) in let alloc_args loc get = alloc_from_list loc ~ctxt:"parameters" Arch.argument_vars Arch.xmm_argument_vars get in let alloc_ret loc get = alloc_from_list loc ~ctxt:"return values" Arch.ret_vars Arch.xmm_ret_vars get in let rec alloc_instr_r loc c = function | Cfor (_, _, s) -> alloc_stmt s c | Copn (lvs, _, op, es) -> forced_registers loc nv vars tr c lvs op es a | Csyscall(lvs, _, es) -> let get_a = function Pvar { gv ; gs = Slocal } -> L.unloc gv | _ -> assert false in let get_r = function Lvar gv -> L.unloc gv | _ -> assert false in alloc_args loc get_a es; alloc_ret loc get_r lvs; c | Cwhile (_, s1, _, _, s2) | Cif (_, s1, s2) -> alloc_stmt s1 c |> alloc_stmt s2 | Cassgn _ -> c | Ccall (lvs, _, es) -> (* TODO: check this *) (* let args = List.map (function Pvar { gv ; gs = Slocal } -> (L.unloc gv) | _ -> assert false) es in let dsts = List.map (function Lvar gv -> gv | _ -> assert false) lvs in let a = alloc_args loc a args in alloc_ret loc a dsts *) ignore lvs; ignore es; c and alloc_instr c { i_loc; i_desc } = alloc_instr_r i_loc c i_desc and alloc_stmt s c = List.fold_left (fun c instr -> alloc_instr c instr) c s in let loc = L.i_loc0 f.f_loc in if FInfo.is_export f.f_cc then alloc_args loc identity f.f_args; if FInfo.is_export f.f_cc then alloc_ret loc L.unloc f.f_ret; let cnf = alloc_stmt f.f_body cnf in (match Arch.callstyle with | Arch_full.ByReg { call = Some r; return } -> begin match Hf.find return_addresses f.f_name with | StackDirect -> () | StackByReg (ra_call, ra_return, _) -> let i = Hv.find vars ra_call in allocate_one nv vars (Location.i_loc f.f_loc []) cnf ra_call i r a; if return then begin match ra_return with | Some ra_return -> let i = Hv.find vars ra_return in allocate_one nv vars (Location.i_loc f.f_loc []) cnf ra_return i r a | None -> (* calling convention requires the return address to be in a register, but there is no booked register. This must not happen. *) assert false end | ByReg (ra, _) -> let i = Hv.find vars ra in allocate_one nv vars (Location.i_loc f.f_loc []) cnf ra i r a end | _ -> ()); cnf (* Returns a variable from [regs] that is allocated to a friend variable of [i]. Defaults to [dflt]. *) let get_friend_registers (dflt: var) (fr: friend) (a: A.allocation) (i: int) (regs: var list) : var = let fregs = get_friend i fr |> IntSet.elements |> List.map (fun k -> A.find k a) in try List.find (fun r -> List.mem (Some r) fregs) regs with Not_found -> dflt let schedule_coloring (size: int) (variables: (int, var list) Hashtbl.t) (cnf: conflicts) (a: A.allocation) : int list = let module G = struct type t = (int, IntSet.t) Hashtbl.t end in (* Sets of uncolored nodes of degree below than size, and whether there are uncolored nodes. *) let nodes_of_low_degree (g: G.t) : IntSet.t * bool = Hashtbl.fold (fun i c ((m, _) as acc) -> if A.mem i a then acc else (if IntSet.cardinal c < size then IntSet.add i m else m), true) g (IntSet.empty, false) in (* Remove from g all nodes in v *) let prune (g: G.t) (v: IntSet.t) : unit = Hashtbl.filter_map_inplace (fun i c -> if IntSet.mem i v then None else Some (IntSet.diff c v)) g in (* Heuristic to pick an uncolored node in g *) (* Any uncolored node is valid: the choice made here is arbitrary. *) let pick (g: G.t) : int = let (r, _), _ = Hashtbl.fold (fun i c m -> if A.mem i a then m else (i, c) :: m) g [] |> List.map (fun (i, c) -> i, c |> IntSet.filter (fun j -> not (A.mem j a)) |> IntSet.cardinal) |> List.min_max ~cmp:(fun (_, x) (_, y) -> Stdlib.Int.compare y x) in r in let pick_if_empty (g: G.t) (v: IntSet.t) : IntSet.t = if IntSet.is_empty v then pick g |> IntSet.singleton else v in let g = Hashtbl.create 97 in Hashtbl.iter (fun i _ -> Hashtbl.add g i (get_conflicts i cnf)) variables; let rec loop (g: G.t) (order: int list) : int list = let v, continue = nodes_of_low_degree g in if not continue then (assert (IntSet.is_empty v); order) else let v = pick_if_empty g v in prune g v; loop g (IntSet.elements v @ order) in loop g [] let lazy_scheduling (variables: (int, var list) Hashtbl.t) (a: A.allocation) : int list = [] |> Hashtbl.fold (fun i _c m -> if A.mem i a then m else i :: m) variables |> List.sort Stdlib.Int.compare let two_phase_coloring (registers: var list) (variables: (int, var list) Hashtbl.t) (cnf: conflicts) (fr: friend) (a: A.allocation) : unit = let size = List.length registers in let schedule = if !Glob_options.lazy_regalloc then lazy_scheduling variables a else schedule_coloring size variables cnf a in (* Give a specific error message if the bank is empty: there is no way the variables can be allocated. We pick one of the variables to illustrate the error message. *) begin match schedule, registers with | i :: _, [] -> let x = List.hd (Hashtbl.find variables i) in hierror_reg ~loc:Lnone "unable to allocate %a: bank “%s” is empty on this architecture" (Printer.pp_dvar ~debug:(debug())) x (string_of_kind (kind_of_type Arch.reg_size x.v_kind x.v_ty)) | _, _ -> () end; List.iter (fun i -> let has_no_conflict v = does_not_conflict i cnf a v in match List.filter has_no_conflict registers with | [] -> if !Glob_options.verbosity > 0 then let pv = Printer.pp_dvar ~debug:true in let ppvl fmt = List.iter @@ Format.fprintf fmt "\n %a" pv in let pp_conflicts fmt c = let unallocated = IntSet.fold (fun i xs -> match A.find i a with | Some r -> Format.fprintf fmt " - register %a%a\n" (Printer.pp_var ~debug:false) r ppvl (Hashtbl.find variables i); xs | None -> i :: xs) c [] in if unallocated <> [] then begin Format.fprintf fmt " - variables not allocated yet"; List.iter (fun i -> ppvl fmt (Hashtbl.find variables i)) unallocated end in let c = get_conflicts i cnf in hierror_reg ~loc:Lnone "no more free register to allocate variable:%a\nConflicts with:\n%a" ppvl (Hashtbl.find variables i) pp_conflicts c else hierror_reg ~loc:Lnone "cannot solve the register allocation problem." | x :: regs -> (* Any register in [x; regs] is valid: the choice made here is arbitrary. *) let y = get_friend_registers x fr a i regs in A.set i y a ) schedule let check_allocated (vars: (int, var list) Hashtbl.t) (a: A.allocation) : unit = match Hashtbl.fold (fun i x m -> if A.mem i a then m else x @ m) vars [] with | [] -> () | m -> hierror_reg ~loc:Lnone "variables { %a } remain unallocated" (pp_list "; " pp_var) m let greedy_allocation (vars: int Hv.t) (nv: int) (cnf: conflicts) (fr: friend) (a: A.allocation) : unit = let scalars : (int, var list) Hashtbl.t = Hashtbl.create nv in let extra_scalars : (int, var list) Hashtbl.t = Hashtbl.create nv in let vectors : (int, var list) Hashtbl.t = Hashtbl.create nv in let flags : (int, var list) Hashtbl.t = Hashtbl.create nv in let push_var tbl i v = match Hashtbl.find tbl i with | old -> Hashtbl.replace tbl i (v :: old) | exception Not_found -> Hashtbl.add tbl i [ v ] in Hv.iter (fun v i -> match kind_of_type Arch.reg_size v.v_kind v.v_ty with | Word -> push_var scalars i v | Extra -> push_var extra_scalars i v | Vector -> push_var vectors i v | Flag -> push_var flags i v | Unknown ty -> hierror_reg ~loc:Lnone "unable to allocate variable %a: no register bank for type %a" pp_var v PrintCommon.pp_ty ty ) vars; two_phase_coloring Arch.allocatable_vars scalars cnf fr a; two_phase_coloring Arch.extra_allocatable_vars extra_scalars cnf fr a; two_phase_coloring Arch.xmm_allocatable_vars vectors cnf fr a; check_allocated flags a; () let var_subst_of_allocation (vars: int Hv.t) (a: A.allocation) (v: var) : var = try let i = Hv.find vars v in oget ~exn:Not_found (A.find i a) with Not_found -> v let subst_of_var_subst (s: var -> var) (v: var L.located) : expr = let m = L.loc v in let v = L.unloc v in Pvar (gkvar (L.mk_loc m (s v))) let subst_of_allocation vars a = var_subst_of_allocation vars a |> subst_of_var_subst let reverse_varmap nv (vars: int Hv.t) : A.allocation = let a = A.empty nv in Hv.iter (fun v i -> A.set i v a) vars; a let renaming (f: ('info, 'asm) func) : (unit, 'asm) func = let vars, nv = collect_variables ~allvars:true Sv.empty f in let lf = Liveness.live_fd false f in let eqc = collect_equality_constraints Arch.asmOp Arch.aparams "Split live range" (fun ~loc:_ _ _ _ _ _ _ _ _ -> ()) vars nv lf in let vars = normalize_variables vars eqc in let a = reverse_varmap nv vars in (* The variable that is added last is the representative of its class. This makes sure that each argument is the representative of its class, meaning that it will be preserved. *) List.iter (fun arg -> A.set (Hv.find vars arg) arg a) f.f_args; let subst = subst_of_allocation vars a in Subst.subst_func subst f (** Returns extra information (k, rsp) depending on the calling convention. - Subroutines: - k: all registers overwritten by a call to f (including ra) - rsp: None - Export: - k: all callee-saved registers overwritten by this function (including rsp) - rsp: if ~stack_needed and if there is a free register, a free register to hold the stack pointer of the caller (aka environment) *) let post_process ~allocatable_vars ~callee_save_vars ~not_saved_stack ~stack_needed (subst: var -> var) ~(killed: funname -> Sv.t) (f: _ func) : Sv.t * var option = let killed_in_f = killed f.f_name |> Sv.map subst in match f.f_cc with | Internal -> assert false | Subroutine _ -> begin assert (not stack_needed); killed_in_f, None end | Export _ -> begin let used_in_f = List.fold_left (fun s x -> Sv.add (subst x) s) killed_in_f f.f_args in let free_regs = Sv.diff allocatable_vars used_in_f in let to_save = Sv.inter callee_save_vars killed_in_f in if stack_needed && Sv.is_empty to_save then to_save, Sv.Exceptionless.any (Sv.diff free_regs not_saved_stack) else to_save, None end let subroutine_ra_by_stack f = match f.f_cc with | Export _ | Internal -> assert false | Subroutine _ -> match Arch.callstyle with | Arch_full.StackDirect -> true | Arch_full.ByReg { call = oreg } -> let dfl = oreg <> None && has_call_or_syscall f.f_body in match f.f_annot.retaddr_kind with | None -> dfl | Some k -> dfl || k = OnStack type callsite_tree = { sv : Sv.t option; sub : callsite_tree Miloc.t } let empty_callsite = { sv = None; sub = Miloc.empty } let rec insert_callsite t (locs, sv) = match locs with | [] -> assert (t.sv = None); { t with sv = Some sv } | loc::locs -> { t with sub = Miloc.modify_def empty_callsite loc (fun t -> insert_callsite t (locs, sv)) t.sub } let callsite_tree (s : (Location.i_loc list * Sv.t) list) = List.fold_left insert_callsite empty_callsite s let pp_liveness vars liveness_per_callsite liveness_table a = (* Prints the program with forced registers, equivalence classes, and liveness information *) let open Format in let open PrintCommon in let open Printer in let pp_variable fmt i = fprintf fmt "v%d" i in let pp_reg fmt r = pp_var fmt ~debug:false r in let pp_nonreg fmt x = pp_var fmt ~debug:true x in let pp_decl_type fmt x = fprintf fmt "%a %a" pp_kind x.v_kind pp_ty x.v_ty in let pp_var fmt x = match Hv.find vars x with | exception Not_found -> pp_nonreg fmt x | i -> match A.find i a with | Some r -> pp_reg fmt r | None -> pp_variable fmt i in let pp_locals fmt s = let tbl = ref IntMap.empty in Sv.iter (fun x -> match Hv.find vars x with | exception Not_found -> fprintf fmt "%a %a@ " pp_decl_type x pp_nonreg x | i -> if A.find i a = None then tbl := IntMap.modify_def [] i (List.cons x) !tbl ) s; IntMap.iter (fun i -> function | [] -> () | x :: _ as xs -> fprintf fmt "%a %a /* %a */@ " pp_decl_type x pp_variable i (pp_list ", " pp_nonreg) xs ) !tbl in let m_word, m_extra, m_vector, m_flag = ref 0, ref 0, ref 0, ref 0 in let reset_max () = m_word := 0; m_extra := 0; m_vector := 0; m_flag := 0 in let set_max k n = match k with | Word -> m_word := max !m_word n | Extra -> m_extra := max !m_extra n | Vector -> m_vector := max !m_vector n | Flag -> m_flag := max !m_flag n | Unknown _ -> assert false in let string_of_k = function | Word -> "word" | Extra -> "extra" | Vector -> "vector" | Flag -> "flag" | Unknown _ -> assert false in let pp_liveset fmt s = let subset k = Sv.elements (Sv.filter (fun x -> k (kind_of_type Arch.reg_size x.v_kind x.v_ty)) s) in let words = subset (fun k -> k = Word) in let extras = subset (fun k -> k = Extra) in let vectors = subset (fun k -> k = Vector) in let flags = subset (fun k -> k = Flag) in let pp fmt (k, xs) = let n = List.length xs in set_max k n; fprintf fmt "@[<h> %d %s%s (%a)@]" n (string_of_k k) (if n > 1 then "s" else "") (pp_list "@ " pp_var) xs in let l = (List.filter (fun (_, m) -> List.length m > 0) [ Word, words; Extra, extras; Vector, vectors; Flag, flags]) in fprintf fmt "%a" (pp_list "@ " pp) l in let pp_info fmt (loc, (i, o)) = fprintf fmt "/* %a */@ " L.pp_iloc_short loc; fprintf fmt "@[<v>/* Live-in:@ %a */@]@ " pp_liveset i; fprintf fmt "@[<v>/* Live-out:@ %a */@]@ " pp_liveset o in let pp_callsites fmt fn = let s = Hf.find_default liveness_per_callsite fn [] in let rec pp_callsite i fmt t = match t.sv with | Some sv -> assert (Miloc.is_empty t.sub); fprintf fmt "@[<v>%a@]" pp_liveset sv; | None -> if Miloc.is_empty t.sub then () else let pp_site fmt (loc, t) = fprintf fmt "(%i)%a@ %a" i L.pp_iloc loc (pp_callsite (i+1)) t in fprintf fmt "@[<v>%a@]" (pp_list "@ " pp_site) (Miloc.bindings t.sub) in if s <> [] then fprintf fmt "@[<v>/* Live when calling %s:@ %a*/@]" fn.fn_name (pp_callsite 0) (callsite_tree s) in let pp_recap fmt fn (i_w, i_e, i_v, i_f) (e_w, e_e, e_v, e_f) = let pp fmt (k, i, e) = fprintf fmt "(intern : %d, extern : %d, total : %d) %s%s" i e (i+e) (string_of_k k) (if (i+e) > 1 then "s" else "") in fprintf fmt "@[<v>/* Maximal register usage for %s:@ %a@ */@]@.@." fn.fn_name (pp_list "@ " pp) (List.filter (fun (_, i , e) -> i + e > 0) [ Word, i_w, e_w; Extra, i_e, e_e; Vector, i_v, e_v; Flag, i_f, e_f]) in printf "/* Ready to allocate variables to registers: */@."; liveness_table |> Hf.iter (fun fn fd -> reset_max(); printf "%a@." (pp_fun ~debug:!Glob_options.debug ~pp_locals ~pp_info (pp_opn Arch.reg_size Arch.asmOp) pp_var) fd; let intern = !m_word, !m_extra, !m_vector, !m_flag in reset_max(); printf "%a@." pp_callsites fn; let extern = !m_word, !m_extra, !m_vector, !m_flag in pp_recap Format.std_formatter fn intern extern) let global_allocation return_addresses (funcs: ('info, 'asm) func list) : (unit, 'asm) func list * (funname -> Sv.t) * (var -> var) * (funname -> Sv.t) = (* Preprocessing of functions: - ensure all variables are named (no anonymous assign) - generate a fresh variable to hold the return address (if needed) - split live ranges (caveat: do not forget to remove φ-nodes at the end) - compute liveness information - compute variables that are killed by a call to a function (including return addresses and extra registers) Initial 'info are preserved in the result. *) let liveness_table : (Sv.t * Sv.t, 'asm) func Hf.t = Hf.create 17 in let killed_map : Sv.t Hf.t = Hf.create 17 in let killed fn = Hf.find killed_map fn in let preprocess f = let f = f |> fill_in_missing_names |> Ssa.split_live_ranges false in Hf.add liveness_table f.f_name (Liveness.live_fd true f); let ra = Hf.find return_addresses f.f_name in let written = let written, cg = written_vars_fc f in let written = match f.f_cc with | (Export _ | Internal) -> written | Subroutine _ -> Sv.union (vars_retaddr ra) written in let killed_by_calls = Mf.fold (fun fn _locs acc -> Sv.union (killed fn) acc) cg Sv.empty in let killed_by_syscalls = if has_syscall f.f_body then Arch.syscall_kill else Sv.empty in Sv.union (Sv.union written killed_by_calls) killed_by_syscalls in Hf.add killed_map f.f_name written; f in let funcs : (unit, 'asm) func list = funcs |> List.rev |> List.rev_map preprocess in if !Glob_options.debug then Format.printf "Before REGALLOC:@.%a@." Printer.(pp_list "@ @ " (pp_func ~debug:true Arch.reg_size Arch.asmOp)) (List.rev funcs); (* Live variables at the end of each function, in addition to returned local variables *) let get_liveness, slive, liveness_per_callsite = let live : (L.i_loc list * Sv.t) list Hf.t = Hf.create 17 in let slive : (BinNums.positive Syscall_t.syscall_t, Sv.t) Hashtbl.t = Hashtbl.create 17 in List.iter (fun f -> let f_with_liveness = Hf.find liveness_table f.f_name in let live_when_calling_f = Hf.find_default live f.f_name [[], Sv.empty] in let cbf loc fn xs (_, s) = let s = Liveness.dep_lvs s xs in let s = List.map (fun (ctx, ls) -> loc :: ctx, Sv.union s ls) live_when_calling_f in Hf.modify_def [] fn (List.rev_append s) live in let cbs _loc o xs (_, s) = let s = Liveness.dep_lvs s xs in match Hashtbl.find slive o with | s0 -> Hashtbl.replace slive o (Sv.union s s0) | exception Not_found -> Hashtbl.add slive o s in Liveness.iter_call_sites cbf cbs f_with_liveness ) funcs; (let tbl = Hf.map (fun _ -> List.fold_left (fun acc (_, s) -> Sv.union acc s) Sv.empty) live in fun fn -> Hf.find_default tbl fn Sv.empty), slive, live in let excluded = Sv.of_list [Arch.rip; Arch.rsp_var] in let vars, nv = collect_variables_in_prog ~allvars:false excluded return_addresses Arch.all_registers funcs in let eqc, tr, fr = collect_equality_constraints_in_prog Arch.asmOp Arch.aparams.ap_is_move_op "Regalloc" (asm_equality_constraints Arch.pointer_data Arch.reg_size) vars nv funcs in let vars = normalize_variables vars eqc in let conflicts = collect_opn_conflicts Arch.pointer_data Arch.reg_size Arch.asmOp vars tr funcs empty_conflicts in (* Intra-procedural conflicts *) let conflicts = Hf.fold (fun _fn lf conflicts -> collect_conflicts Arch.pointer_data Arch.reg_size Arch.asmOp vars tr lf conflicts ) liveness_table conflicts in (* In-register return address conflicts with function arguments *) let conflicts = let doit ra = List.fold_left (fun cnf x -> conflicts_add_one Arch.pointer_data Arch.reg_size Arch.asmOp vars tr Lnone ra x cnf) in List.fold_left (fun a f -> match Hf.find return_addresses f.f_name with | StackDirect -> a | StackByReg (ra_call, ra_return, tmp) -> (* ra_call conflicts with function arguments *) let a = doit ra_call a f.f_args in let a = match ra_return with | Some ra_return -> (* ra_return conflicts with function results *) doit ra_return a (List.map L.unloc f.f_ret) | None -> a in begin match tmp with | Some tmp -> (* tmp register used to increment the stack conflicts with function arguments and results *) let a = doit tmp a f.f_args in doit tmp a (List.map L.unloc f.f_ret) | None -> a end | ByReg (ra, tmp) -> let a = doit ra a f.f_args in match tmp with | Some tmp -> (* tmp register used to increment the stack conflicts with function arguments and results *) let a = doit tmp a f.f_args in doit tmp a (List.map L.unloc f.f_ret) | None -> a) conflicts funcs in (* Inter-procedural conflicts *) let conflicts = let add_conflicts s x = Sv.fold (conflicts_add_one Arch.pointer_data Arch.reg_size Arch.asmOp vars tr Lnone x) s in List.fold_right (fun f cnf -> let live = get_liveness f.f_name in let vars = killed f.f_name in let cnf = match Hf.find return_addresses f.f_name with | ByReg (ra, _) -> cnf |> add_conflicts (Sv.remove ra vars) ra | StackDirect | StackByReg _ -> cnf in cnf |> Sv.fold (add_conflicts vars) live ) funcs conflicts in (* syscall conflicts *) let conflicts = let add_conflicts x = Sv.fold (conflicts_add_one Arch.pointer_data Arch.reg_size Arch.asmOp vars tr Lnone x) Arch.syscall_kill in Hashtbl.fold (fun _o live cnf -> cnf |> Sv.fold add_conflicts live) slive conflicts in let a = A.empty nv in (* Allocate all_vars *) let allocate_one x = match Hv.find vars x with | i -> allocate_one nv vars L.i_dummy conflicts x i x a | exception Not_found -> () in List.iter allocate_one Arch.all_registers; let conflicts = List.fold_left (fun c f -> allocate_forced_registers return_addresses nv vars tr c f a) conflicts funcs in if !Glob_options.print_liveness then pp_liveness vars liveness_per_callsite liveness_table a; greedy_allocation vars nv conflicts fr a; let subst = var_subst_of_allocation vars a in List.map (fun f -> f |> Subst.subst_func (subst_of_var_subst subst) |> Ssa.remove_phi_nodes) funcs, get_liveness, subst , killed let allocatable_vars = Sv.of_list Arch.allocatable_vars let callee_save_vars = Sv.of_list Arch.callee_save_vars let not_saved_stack = Sv.of_list (Arch.not_saved_stack @ Arch.callee_save_vars) let get_reg_oracle (has_stack: ('info, 'asm) func -> bool) subst killed return_address f : reg_oracle_t = let stack_needed = has_stack f in let to_save, ro_rsp = post_process ~allocatable_vars ~callee_save_vars ~not_saved_stack ~stack_needed ~killed subst f in let ro_return_address = match return_address with | StackDirect -> StackDirect | StackByReg(ra_call, ra_return, tmp) -> StackByReg (subst ra_call, Option.map subst ra_return, Option.map subst tmp) | ByReg(r, tmp) -> ByReg (subst r, Option.map subst tmp) in let ro_to_save = if FInfo.is_export f.f_cc then Sv.elements to_save else [] in { ro_to_save ; ro_rsp ; ro_return_address } let alloc_prog return_addresses (dfuncs: ('a * ('info, 'asm) func) list) : (var -> var) * _ * ('a * (unit, 'asm) func) list = (* Ensure that instruction locations are really unique, so that there is no confusion on the position of the “extra free register”. *) let dfuncs = List.map (fun (a,f) -> a, Prog.refresh_i_loc_f f) dfuncs in let extra : 'a Hf.t = Hf.create 17 in let funcs, get_liveness, subst, killed = dfuncs |> List.map (fun (a, f) -> Hf.add extra f.f_name a; f) |> global_allocation return_addresses in subst, killed, funcs |> List.map (fun f -> let e = Hf.find extra f.f_name in e, f ) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>