package jasmin
Compiler for High-Assurance and High-Speed Cryptography
Install
dune-project
Dependency
Authors
Maintainers
Sources
jasmin-compiler-v2025.06.1.tar.bz2
sha256=e92b42fa69da7c730b0c26dacf842a72b4febcaf4f2157a1dc18b3cce1f859fa
doc/src/jasmin.jasmin/constraints.ml.html
Source file constraints.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
module UnionFind = UnionFindBasic (* --------------------------------------------------------- *) (* Variables level and predefined constants *) module Vl : sig type t val compare : t -> t -> int val equal : t -> t -> bool val hash : t -> int val public : t val secret : t val is_public : t -> bool val is_secret : t -> bool val constants : t list val is_constant : t -> bool val is_uni : t -> bool val fresh : ?name:string -> unit -> t val name : t -> string val to_string : t -> string val pp : Format.formatter -> t -> unit end = struct type t = { name : string; uid : int; } let name t = t.name let uid = ref (-1) let fresh ?(name="?") _ = incr uid; { name; uid = !uid; } let public = fresh ~name:"public" () let secret = fresh ~name:"secret" () let compare vl1 vl2 = vl1.uid - vl2.uid let equal vl1 vl2 = vl1.uid = vl2.uid let hash vl = vl.uid let is_uni vl = vl.name = "?" let to_string vl = if is_uni vl then vl.name ^ (string_of_int vl.uid) else vl.name let pp fmt vl = Format.fprintf fmt "%s" (to_string vl) let constants = [public; secret] let is_constant vl = List.exists (equal vl) constants let is_public vl = equal public vl let is_secret vl = equal secret vl end module Hvl = Hashtbl.Make(Vl) module Mvl = Map.Make(Vl) module Svl = Set.Make(Vl) (* --------------------------------------------------------- *) (* Inequalities *) module Lvl : sig type t val vlevel : t -> Vl.t val successors : t -> t list val fresh : Vl.t -> t list -> t val equal : t -> t -> bool val le : t -> t -> bool (* Do not use this function until you are sure that the merge will not make the constraints inconsistant *) val merge : t -> t -> t exception Unsat of (t list * t * t) val add_le : t -> t -> unit val iter : (t -> unit) -> t -> unit (* val clear_successors : t -> unit *) (* Warning use this function only when you are sure to not create cycle *) val add_successors : t -> t list -> unit val pp : Format.formatter -> t -> unit val pp_s : ?debug:bool -> Format.formatter -> t -> unit val is_public : t -> bool val is_secret : t -> bool val simplify : tokeep:(t-> bool) -> t -> unit end = struct type level = { vlevel : Vl.t; (* l *) succ : t list; (* l' \in succ => l <= l' *) } and t = level UnionFind.elem let repr (e:t) = UnionFind.find e let fresh vlevel succ = UnionFind.make { vlevel; succ } let vlevel (e:t) = (UnionFind.get e).vlevel let successors (e:t) = (UnionFind.get e).succ let is_public (e:t) = Vl.is_public (vlevel e) let is_secret (e:t) = Vl.is_secret (vlevel e) let visited = Hvl.create 97 let clear_visited () = Hvl.clear visited let is_visited vl = Hvl.mem visited vl let set_visited vl = Hvl.add visited vl () let equal (e1:t) (e2:t) = Vl.equal (vlevel e1) (vlevel e2) let le (e1:t) (e2:t) = let vl1 = vlevel e1 in let vl2 = vlevel e2 in if Vl.is_public vl1 || Vl.is_secret vl2 then true else begin clear_visited(); let rec find e = let vl = vlevel e in Vl.equal vl vl2 || (not (is_visited vl) && (set_visited vl; List.exists find (successors e))) in find e1 end let iter (f : t -> unit) e = clear_visited (); let rec iter e = let vl = vlevel e in if not (is_visited vl) then (f e; set_visited vl; List.iter iter (successors e)) in iter e let path = Hvl.create 97 let clear_path () = Hvl.clear path let add_path vl e = Hvl.add path vl (Some (repr e)); true let add_nopath vl = Hvl.add path vl None; false (* [between l l' = s ] forall l1 \in s, l <= l1 <= l' *) let between (e:t) (e':t) = clear_path(); let vl' = vlevel e' in (* e <= e1 *) let rec find e1 = let vl1 = vlevel e1 in match Hvl.find path vl1 with | None -> false (* no path from e1 to e' *) | Some _ -> true (* e1 <= e' *) | exception Not_found -> if vl1 = vl' then (* e <= e1 = e' *) add_path vl1 e1 else let found = List.fold_left (fun b e2 -> find e2 || b) false (successors e1) in if found then (* e1 <= s <= e' *) add_path vl1 e1 else add_nopath vl1 in ignore (find e); Hvl.fold (fun _ e1 l -> match e1 with None -> l | Some e1 -> e1 :: l) path [] let succ = Hvl.create 97 let clear_succ () = Hvl.clear succ let add_succ vl e = Hvl.replace succ vl (UnionFind.find e) let merge (e1:t) (e2:t) = clear_succ (); let merge_level (l1:level) (l2:level) = (* (vl1, succ1) (vl2, succ2) *) let add e = let vl = vlevel e in if Vl.equal l1.vlevel vl || Vl.equal l2.vlevel vl then () else add_succ vl e in List.iter add l1.succ; List.iter add l2.succ; let vlevel = if Vl.is_constant l2.vlevel || Vl.is_uni l1.vlevel && not (Vl.is_uni l2.vlevel) then l2.vlevel else l1.vlevel in let succ = if Hvl.length succ = 1 then Hvl.fold (fun _ e s -> e :: s) succ [] else (* remove secret *) Hvl.fold (fun vl e s -> if Vl.equal vl Vl.secret then s else e :: s) succ [] in { vlevel; succ } in UnionFind.merge merge_level e1 e2 (* let clear_successors (e:t) = clear_succ (); let lvl = UnionFind.get e in List.iter (fun s -> add_succ (vlevel s) s) lvl.succ; UnionFind.set e { lvl with succ = Hvl.fold (fun _ e s -> e :: s) succ [] } *) let add_successors (e:t) succ = let lvl = UnionFind.get e in UnionFind.set e { lvl with succ = List.fold_left (fun ss s -> repr s :: ss) lvl.succ succ } exception Unsat of (t list * t * t) (* Add the constraint l1 <= l2 *) let add_le (l1:t) (l2:t) = if le l1 l2 then () (* constraint already present do nothing *) else match between l2 l1 with | [] -> (* no cycle, add the constraint *) let lvl = UnionFind.get l1 in let lvl = { lvl with succ = l2 :: lvl.succ } in UnionFind.set l1 lvl; | e :: es as ees -> (* cycle found *) (* Check that we do not merge two constants *) let test = List.exists is_public ees && List.exists is_secret ees in if test then raise (Unsat(ees, l1, l2)); ignore (List.fold_left merge e es) let pp fmt l = Vl.pp fmt (vlevel l) let pp_s ?(debug=false) fmt l = let vl = vlevel l in let succ = successors l in let pp succ = Format.fprintf fmt "%a <= @[%a@],@ " Vl.pp vl (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt "@ ") (fun fmt s -> Vl.pp fmt (vlevel s))) succ in if debug then pp succ else let succ = if Vl.is_public vl then [] else List.filter (fun s -> not (is_secret s)) succ in if succ <> [] then pp succ let simplify ~(tokeep:t -> bool) (l:t) = let long = true and short = false in let _R = Hvl.create 97 in let rec visite x = let vx = vlevel x in try Hvl.find _R vx with Not_found -> let _M : (t * bool) Hvl.t = Hvl.create 23 in let add_M z (ez, p) = let p' = p || (try snd (Hvl.find _M z) with Not_found -> short) in Hvl.replace _M z (ez, p') in let do_s y = let yin = tokeep y in Hvl.iter (if yin then (fun z (ez, _p) -> Hvl.replace _M z (ez,long)) else (fun z ep -> add_M z ep)) (visite y); if yin then add_M (vlevel y) (y, short) in List.iter do_s (successors x); Hvl.add _R vx _M; (* now clear the successor of x *) let succ = Hvl.fold (fun _ (s, p) succ -> if p = short then s :: succ else succ) _M [] in let lvl = UnionFind.get x in UnionFind.set x { lvl with succ }; _M in ignore (visite l) end (* ----------------------------------------------------------- *) (* paired types. Essentially a shorthand for adding inequalities *) module VlPairs = struct type t = Lvl.t * Lvl.t let add_le (n1, s1) (n2, s2) = Lvl.add_le n1 n2; Lvl.add_le s1 s2 let add_le_speculative s' (_, s) = Lvl.add_le s' s let normalise (l, _) = (l, l) end (* ----------------------------------------------------------- *) module C : sig type constraints val init : unit -> constraints val public : constraints -> Lvl.t val secret : constraints -> Lvl.t val fresh : ?name:string -> constraints -> Lvl.t val pp_debug : Format.formatter -> constraints -> unit val pp : Format.formatter -> constraints -> unit val simplify : constraints -> unit val prune : constraints -> Lvl.t list -> unit val optimize : constraints -> tomax:Lvl.t list -> tomin:Lvl.t list -> unit val clone : constraints -> constraints -> (Lvl.t -> Lvl.t) val is_instance : (Lvl.t -> Lvl.t) -> constraints -> constraints -> bool end = struct type constraints = { (* FIXME : repr is not needed it can be remove, it is useful only for printing *) repr : Lvl.t Hvl.t; public : Lvl.t; secret : Lvl.t; } let public c = c.public let secret c = c.secret let add_vl tbl vl successors = let l = Lvl.fresh vl successors in Hvl.add tbl vl l; l let init () = let repr = Hvl.create 257 in let secret = add_vl repr Vl.secret [] in let public = add_vl repr Vl.public [] in { repr; public; secret } let fresh ?name c = (* FIXME: can we remove secret if we do a special case for "add_le secret l" ? i.e. set l and all variable greater than l to secret *) let l = add_vl c.repr (Vl.fresh ?name ()) [c.secret] in Lvl.add_successors c.public [l]; l let pp_debug fmt c = (* print equalities *) Format.fprintf fmt "@[<v>"; Hvl.iter (fun vl l -> let vl' = Lvl.vlevel l in if not (Vl.equal vl vl') then Format.fprintf fmt "%a = %a@ " Vl.pp vl Vl.pp vl') c.repr; (* print inequalities *) Lvl.iter (Lvl.pp_s ~debug:true fmt) c.public; Format.fprintf fmt "@]" let pp fmt c = (* Do not print equalities or public <= l or l <= secret *) Format.fprintf fmt "@["; Lvl.iter (Lvl.pp_s ~debug:false fmt) c.public; Format.fprintf fmt "@]" (* [simplify c] simplify the graph by removing the transitive edge *) let simplify (c:constraints) = Lvl.simplify ~tokeep:(fun _ -> true) c.public let prune (c:constraints) (ltokeep: Lvl.t list) = let tokeep = Hvl.create 31 in List.iter (fun l -> Hvl.replace tokeep (Lvl.vlevel l) ()) (c.public :: c.secret :: ltokeep); Lvl.simplify ~tokeep:(fun l -> Hvl.mem tokeep (Lvl.vlevel l)) c.public type minmax = | Minimize | Maximize | MinMax (* let pp_minmax fmt = function | Maximize -> Format.fprintf fmt "Maximize" | MinMax -> Format.fprintf fmt "MinMax" | Minimize -> Format.fprintf fmt "Minimize" *) let optimize (c:constraints) ~(tomax : Lvl.t list) ~(tomin : Lvl.t list) = let minmax = Hvl.create 97 in let add mm l = let vl = Lvl.vlevel l in match Hvl.find minmax vl with | mm' -> if mm <> mm' then Hvl.replace minmax vl MinMax | exception Not_found -> Hvl.add minmax vl mm in add MinMax (public c); add MinMax (secret c); List.iter (add Maximize) tomax; List.iter (add Minimize) tomin; let get_minmax l = try Hvl.find minmax (Lvl.vlevel l) with Not_found -> MinMax in let merge_minmax l s = let lmm = get_minmax l in let smm = get_minmax s in let mm = if lmm = smm then lmm else MinMax in add mm l; add mm s in let progress = ref true in while !progress do progress := false; (* try to maximize first *) Lvl.iter (fun l -> if get_minmax l = Maximize then match Lvl.successors l with | [s] -> progress := true; merge_minmax l s; ignore (Lvl.merge l s) | _ -> ()) (public c); if not !progress then begin (* Compute the table of predessors *) let pred = Hvl.create 97 in let get_pred l = try Hvl.find pred (Lvl.vlevel l) with Not_found -> Svl.empty in let add_pred p s = Hvl.replace pred (Lvl.vlevel s) (Svl.add (Lvl.vlevel p) (get_pred s)) in Lvl.iter (fun l -> List.iter (add_pred l) (Lvl.successors l)) (public c); (* minimize *) Lvl.iter (fun l -> if get_minmax l = Minimize then let p = get_pred l in if Svl.cardinal p = 1 then let p = Hvl.find c.repr (Svl.choose p) in progress := true; merge_minmax p l; ignore (Lvl.merge p l)) (public c); end; if !progress then simplify c done (* let norm (c:constraints) = Lvl.iter Lvl.clear_successors c.public *) (* clone c and add the constraints in c' *) let clone (c:constraints) (c':constraints) = let subst = Hvl.create 31 in let rec do_l l = let vl = Lvl.vlevel l in try Hvl.find subst vl with Not_found -> let successors = List.map do_l (Lvl.successors l) in let l = if Vl.is_public vl then c'.public else if Vl.is_secret vl then c'.secret else begin assert (not (Vl.is_constant vl)); add_vl c'.repr (Vl.fresh ~name:(Vl.name vl) ()) [] end in Lvl.add_successors l successors; Hvl.add subst vl l; l in ignore (do_l c.public); do_l (* t | C *) let is_instance (rho : Lvl.t (* c *) -> Lvl.t (* cu *) ) _cu c = try Lvl.iter (fun l -> let lu = rho l in if List.for_all (fun s -> Lvl.le lu (* rho l*) (rho s)) (Lvl.successors l) then () else raise Not_found) c.public; true with Not_found -> false end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>