Page
Library
Module
Module type
Parameter
Class
Class type
Source
GrSourceGR is based on an implementation of a Graphical Kernel System (GKS) and OpenGL. As a self-contained system it can quickly and easily be integrated into existing applications.
The GR framework can be used in imperative programming systems or integrated into modern object-oriented systems, in particular those based on GUI toolkits. GR is characterized by its high interoperability and can be used with modern web technologies and mobile devices. The GR framework is especially suitable for real-time environments.
The bindings aree based on version 0.37.0, but should work in any successive version.
Make sure libgr is installed. Currently the library is only looked through the default library paths of your system or using GRDIR. You can customise this further by specifying the path to libGR.so or libGR.dylib via the environment variable LIBGRPATH.
type linetype = | SOLIDSolid line
*)| DASHEDDashed line
*)| DOTTEDDotted line
*)| DASHED_DOTTEDDashed-dotted line
*)| DASH_2_DOTSequence of one dash followed by two dots
*)| DASH_3_DOTSequence of one dash followed by three dots
*)| LONG_DASHSequence of long dashes
*)| LONG_SHORT_DASHSequence of a long dash followed by a short dash
*)| SPACED_DASHSequence of dashes double spaced
*)| SPACED_DOTSequence of dots double spaced
*)| DOUBLE_DOTSequence of pairs of dots
*)| TRIPLE_DOTSequence of groups of three dots
*)Available line types, see also GR Line Types
type markertype = | DOTSmallest displayable dot
*)| PLUSPlus sign
*)| ASTERISKAsterisk
*)| CIRCLEHollow circle
*)| DIAGONAL_CROSSDiagonal cross
*)| SOLID_CIRCLEFilled circle
*)| TRIANGLE_UPHollow triangle pointing upward
*)| SOLID_TRI_UPFilled triangle pointing upward
*)| TRIANGLE_DOWNHollow triangle pointing downward
*)| SOLID_TRI_DOWNFilled triangle pointing downward
*)| SQUAREHollow square
*)| SOLID_SQUAREFilled square
*)| BOWTIEHollow bowtie
*)| SOLID_BOWTIEFilled bowtie
*)| HGLASSHollow hourglass
*)| SOLID_HGLASSFilled hourglass
*)| DIAMONDHollow diamond
*)| SOLID_DIAMONDFilled Diamond
*)| STARHollow star
*)| SOLID_STARFilled Star
*)| TRI_UP_DOWNHollow triangles pointing up and down overlaid
*)| SOLID_TRI_RIGHTFilled triangle point right
*)| SOLID_TRI_LEFTFilled triangle pointing left
*)| HOLLOW_PLUSHollow plus sign
*)| SOLID_PLUSSolid plus sign
*)| PENTAGONPentagon
*)| HEXAGONHexagon
*)| HEPTAGONHeptagon
*)| OCTAGONOctagon
*)| STAR_44-pointed star
*)| STAR_55-pointed star (pentagram)
*)| STAR_66-pointed star (hexagram)
*)| STAR_77-pointed star (heptagram)
*)| STAR_88-pointed star (octagram)
*)| VLINEverical line
*)| HLINEhorizontal line
*)| OMARKo-mark
*)Available marker types, see also GR Marker Types
type font = | TIMES_ROMAN| TIMES_ITALIC| TIMES_BOLD| TIMES_BOLDITALIC| HELVETICA| HELVETICA_OBLIQUE| HELVETICA_BOLD| HELVETICA_BOLDOBLIQUE| COURIER| COURIER_OBLIQUE| COURIER_BOLD| COURIER_BOLDOBLIQUE| SYMBOL| BOOKMAN_LIGHT| BOOKMAN_LIGHTITALIC| BOOKMAN_DEMI| BOOKMAN_DEMIITALIC| NEWCENTURYSCHLBK_ROMAN| NEWCENTURYSCHLBK_ITALIC| NEWCENTURYSCHLBK_BOLD| NEWCENTURYSCHLBK_BOLDITALIC| AVANTGARDE_BOOK| AVANTGARDE_BOOKOBLIQUE| AVANTGARDE_DEMI| AVANTGARDE_DEMIOBLIQUE| PALATINO_ROMAN| PALATINO_ITALIC| PALATINO_BOLD| PALATINO_BOLDITALIC| ZAPFCHANCERY_MEDIUMITALIC| ZAPFDINGBATSPattern style, see also GR Fill Patterns and Hatches
Hatch style, see also GR Fill Patterns and Hatches
type fill_style = | HOLLOWNo filling. Just draw the bounding polyline
*)| SOLIDFill the interior of the polygon using the fill color index
*)| PATTERN of pattern_styleFill the interior of the polygon using the style index as a pattern index
*)| HATCH of hatch_styleFill the interior of the polygon using the style index as a cross-hatched style
*)type color_map = | Uniform| Temperature| Grayscale| Glowing| Rainbowlike| Geologic| Greenscale| Cyanscale| Bluescale| Magentascale| Redscale| Flame| Brownscale| Pilatus| Autumn| Bone| Cool| Copper| Gray| Hot| Hsv| Jet| Pink| Spectral| Spring| Summer| Winter| Gist_Earth| Gist_Heat| Gist_Ncar| Gist_Rainbow| Gist_Stern| Afmhot| Brg| Bwr| Coolwarm| Cmrmap| Cubehelix| Gnuplot| Gnuplot2| Ocean| Rainbow| Seismic| Terrain| Viridis| Inferno| Plasma| MagmaColor Maps, see also GR Color Maps
type surface_options = | LINESUse X Y polylines to denote the surface
*)| MESHUse a wire grid to denote the surface
*)| FILLED_MESHApplies an opaque grid to the surface
*)| Z_SHADED_MESHApplies Z-value shading to the surface
*)| COLORED_MESHApplies a colored grid to the surface
*)| CELL_ARRAYApplies a grid of individually-colored cells to the surface
*)| SHADED_MESHApplies light source shading to the 3-D surface
*)set_window xmin xmax ymin ymax establishes a window, or rectangular subspace, of world coordinates to be plotted. If you desire log scaling or mirror-imaging of axes, use the gr_setscale function.
This function defines the rectangular portion of the World Coordinate space (WC) to be associated with the specified normalization transformation. The WC window and the Normalized Device Coordinates (NDC) viewport define the normalization transformation through which all output primitives are mapped. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates. By default, GR uses the range [0,1] x [0,1], in world coordinates, as the normalization transformation window.
Parameters
xmin: The left horizontal coordinate of the window (xmin < xmax).xmax: The right horizontal coordinate of the window (xmin < xmax).ymin: The bottom vertical coordinate of the window (ymin < ymax).ymax: The top vertical coordinate of the window (ymin < ymax).set_viewport xmin xmax ymin ymax establishes a rectangular subspace of normalized device coordinates.
This function defines the rectangular portion of the Normalized Device Coordinate (NDC) space to be associated with the specified normalization transformation. The NDC viewport and World Coordinate (WC) window define the normalization transformation through which all output primitives pass. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates.
Parameters
xmin: The left horizontal coordinate of the viewport (0 <= xmin < xmax).xmax: The right horizontal coordinate of the viewport (xmin < xmax <= 1).ymin: The bottom vertical coordinate of the viewport (0 <= ymin < ymax).ymax: The top vertical coordinate of the viewport (ymin < ymax <= 1).select_transformation transform selects a predefined transformation from world coordinates to normalized device coordinates.
Parameters
transform: A normalization transformation number:
0 selects the identity transformation in which both the window and viewport have the range of 0 to 1;>= 1 selects a normalization transformation as defined by set_window and set_viewport.clip indicator sets the clipping indicator. This function enables or disables clipping of the image drawn in the current window. Clipping is defined as the removal of those portions of the graph that lie outside of the defined viewport. If clipping is on, GR does not draw generated output primitives past the viewport boundaries. If clipping is off, primitives may exceed the viewport boundaries, and they will be drawn to the edge of the workstation window. By default, clipping is on.
Parameters
indicator: An indicator specifying whether clipping is on or off.
false clipping is off. Data outside of the window will be drawn.true clipping is on. Data outside of the window will not be drawn.set_space zmin zmax rotation tilt sets the abstract Z-space used for mapping three-dimensional output primitives into the current world coordinate space.
This function establishes the limits of an abstract Z-axis and defines the angles for rotation and for the viewing angle (tilt) of a simulated three-dimensional graph, used for mapping corresponding output primitives into the current window. These settings are used for all subsequent three-dimensional output primitives until other values are specified. Angles of rotation and viewing angle must be specified between 0 and 90 degrees.
Parameters
zmin: Minimum value for the Z-axis.zmax: Maximum value for the Z-axis.rotation: Angle for the rotation of the X axis, in degrees.tilt: Viewing angle of the Z axis, in degrees.set_linewidth lw defines the line width of subsequent polyline output primitives.
The line width is calculated as the nominal line width generated on the workstation multiplied by the line width scale factor. This value is mapped by the workstation to the nearest available line width. The default line width is 1.0, or 1 times the line width generated on the graphics device.
set_linecolorindex c defines the color of subsequent polyline output primitives. Note: c < 1256
set_markersize ms specify the marker size for polymarkers.
The polymarker size is calculated as the nominal size generated on the graphics device multiplied by the marker size scale factor.
set_markercolorindex c define the color of subsequent markers output primitives. Note: c < 1256
set_arrowstyle style sets the arrow style to be used for subsequent arrow commands.
This function defines the arrow style for subsequent arrow primitives. The default arrow style is 1.
Parameters
style: The arrow style to be used. Available styles are:(*TODO: Use a sum type.*)
set_arrowsize size sets the arrow size to be used for subsequent arrow commands.
This function defines the arrow size for subsequent arrow primitives. The default arrow size is 1.
Parameters
size: The arrow size to be usedset_text_font_prec ?precision font specifies the text font and precision for subsequent text output primitives.
The appearance of a font depends on the text precision value specified. STRING, CHARACTER or STROKE precision allows for a greater or lesser realization of the text primitives, for efficiency. STRING is the default precision for GR and produces the highest quality output.
XXX: CHARACTER and STROKE precision seem to be broken (and to break the axes command with it...)!
set_char_expand_factor factor sets the current character expansion factor (width to height ratio).
This function defines the width of subsequent text output primitives. The expansion factor alters the width of the generated characters, but not their height. The default text expansion factor is 1, or one times the normal width-to-height ratio of the text.
Parameters
factor: Text expansion factor applied to the nominal text width-to-height ratioset_text_colorindex color sets the current text color index.
This function defines the color of subsequent text output primitives. GR uses the default foreground color (black=1) for the default text color index.
Parameters
color: The text color index (COLOR < 1256)set_char_height height sets the current character height.
This function defines the height of subsequent text output primitives. Text height is defined as a percentage of the default window. GR uses the default text height of 0.027 (2.7% of the height of the default window).
set_char_up (x, y) Set the current character text angle up vector. This function defines the vertical rotation of subsequent text output primitives. The text up vector is initially set to (0, 1), horizontal to the baseline.
Parameters
x: X coordinate of the text up vectory: Y coordinate of the text up vectorset_text_path direction defines the current direction in which subsequent text will be drawn.
set_text_align horizontal vertical specifies how the characters in a text primitive will be aligned in horizontal and vertical space. The default text alignment indicates horizontal left alignment and vertical baseline alignment.
set_fill_interior_style style sets the fill area interior style to be used for fill areas.
This function defines the interior style for subsequent fill area output primitives. The default interior style is HOLLOW.
set_fill_colorindex color sets the current fill area color index.
This function defines the color of subsequent fill area output primitives. GR uses the default foreground color (black=1) for the default fill area color index.
Parameters
color: The fill area color index (COLOR < 1256)set_color_representation index (red, green, blue) redefines an existing color index representation by specifying an RGB color triplet.
Parameters
index: Color index in the range 0 to 1256red: Red intensity in the range 0.0 to 1.0green: Green intensity in the range 0.0 to 1.0blue: Blue intensity in the range 0.0 to 1.0set_colormap cmap sets the currently used colormap.
A list of colormaps can be found at: GR Colormaps.
set_shadow (offsetx, offsety) blur Allows drawing of shadows, realized by images painted underneath, and offset from, graphics objects such that the shadow mimics the effect of a light source cast on the graphics objects.
Parameters
offsetx: An x-offset, which specifies how far in the horizontal direction the shadow is offset from the objectoffsety: A y-offset, which specifies how far in the vertical direction the shadow is offset from the objectblur: A blur value, which specifies whether the object has a hard or a diffuse edgeset_transparency alpha sets the value of the alpha component associated with GR colors.
Parameters
alpha: An alpha value (0.0 - 1.0)set_coord_transform transform Change the coordinate transformation according to the given matrix. Parameters
mat: 2D transformation matrix (3x2)val polyline :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
unitpolyline ?linetype ?linewidth ?coloridx x y draws a polyline using the current line attributes, starting from the first data point and ending at the last data point.
The values for x and y are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.
val polyline3d :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
unitpolyline3d ?linetype ?linewidth ?coloridx x y z draws a polyline using the current line attributes, starting from the first data point and ending at the last data point.
The values for x, y and z are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.
val polymarker :
?markertype:markertype ->
?markersize:float ->
?coloridx:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
unitpolymarker ?markertype ?markersize ?coloridx x y draws marker symbols centered at the given data points.
The values for x and y are in world coordinates. The attributes that control the appearance of a polyline are markertype, markersize and color index.
val polymarker3d :
?markertype:markertype ->
?markersize:float ->
?coloridx:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
unitpolymarker3d ?markertype ?markersize ?coloridx x y z draws marker symbols centered at the given data points.
The values for x, y and z are in world coordinates. The attributes that control the appearance of a polyline are markertype, markersize and color index.
text x y content draws a text at position x, y using the current text attributes.
The values for x and y are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.
(* TODO: add styling options *)
val fillarea :
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
unitfillarea x y allows you to specify a polygonal shape of an area to be filled. The vectors x and y specify the coordinates of the polygonal shape corners.
The attributes that control the appearance of fill areas are fill area interior style, fill area style index and fill area color index. (* TODO: add styling options *)
val cellarray :
(float * float) ->
(float * float) ->
(int * int) ->
(int * int) ->
(int * int) ->
(int, 'a, 'b) Bigarray.Genarray.t ->
unitcellarray (xmin, xmax) (ymin, ymax) (dimx, dimy) (scol, srow) (ncol, nrow) color displays rasterlike images in a device-independent manner. The cell array function partitions a rectangle given by two corner points into DIMX X DIMY cells, each of them colored individually by the corresponding color index of the given cell array.
The values for xmin, xmax, ymin and ymax are in world coordinates.
Parameters
xmin: X coordinate of the lower left point of the rectangleymin: Y coordinate of the lower left point of the rectanglexmax: X coordinate of the upper right point of the rectangleymax: Y coordinate of the upper right point of the rectangledimx: X dimension of the color index arraydimy: Y dimension of the color index arrayscol: number of leading columns in the color index arraysrow: number of leading rows in the color index arrayncol: total number of columns in the color index arraynrow: total number of rows in the color index arraycolor: color index arrayNote: nonuniformcellarray and polycellarray have been introduced in newer versions of gr.
val spline :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
int ->
spline_algo ->
unitspline ?linetype ?linewidth ?coloridx x y m method_t generates a cubic spline-fit, starting from the first data point and ending at the last data point.
The values for x and y are in world coordinates. The attributes that control the appearance of a spline-fit are linetype, linewidth and color index.
Parameters
x: The X coordinatesy: The Y coordinatesm: The number of points in the polygon to be drawnmethod: The smoothing methodval gridit :
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(int * int) ->
(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.t
* (float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Genarray.tgridit x y z (nx, ny) interpolates data from arbitrary points at points on a rectangular grid.
Parameters
x: The X coordinates of the input pointsy: The Y coordinates of the input pointsz: The values of the pointsnx: The number of points in X direction for the output gridny: The number of points in Y direction for the output gridReturns the tuple (x', y', z') with
x': The points in X direction for the output gridy': The points in Y direction for the output gridz': The interpolated values on the nx x ny grid pointstex_text (x, y) text draws a text at position x, y using the current text attributes. Strings can be defined to create basic mathematical expressions and Greek letters.
The values for X and Y are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.
Parameters
x: The X coordinate of starting position of the text stringy: The Y coordinate of starting position of the text stringtext: The text to be drawnThe character string is interpreted to be a simple mathematical formula. The following notations apply:
To include a Greek letter you must specify the corresponding keyword after a backslash (‘') character. The text translator produces uppercase or lowercase Greek letters depending on the case of the keyword. For more sophisticated mathematical formulas, you should use the gr_mathtex function.
See the full documentation at GR Documentation for gr_textext.
math_tex (x, y) tex generates a character string starting at the given location. Strings can be defined to create mathematical symbols and Greek letters using LaTeX syntax.
Parameters
x: The X coordinate of the starting position of the text stringy: The Y coordinate of the starting position of the text stringtex: The TeX text string to be drawnval axes :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
?tick_size:float ->
float ->
float ->
unitaxes ?scale ?linetype ?linewidth ?origin:(0,0) ?major:(1,1) ?size:1 x_tick y_tick draws X and Y coordinate axes with linearly and/or logarithmically spaced tick marks. Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window.
Parameters
x_tick: The interval between minor tick marks on the X axis.y_tick: The interval between minor tick marks on the Y axis.x_org: The world coordinate of the origin (point of intersection) of the X axis.y_org: The world coordinate of the origin (point of intersection) of the Y axis.major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa)val axes_labels :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
?tick_size:float ->
(float -> float -> string -> float -> unit) ->
(float -> float -> string -> float -> unit) ->
float ->
float ->
unitaxes_labels ?(scale = []) ?linetype ?linewidth ?coloridx ?(origin = 0.0, 0.0) ?(major = 1, 1) ?(tick_size = -0.01) (fpx : float -> float -> string -> float -> unit) (fpy : float -> float -> string -> float -> unit) x_tick y_tick creates axes in the current workspace and supply a custom function for changing the behaviour of the tick labels.
Similar to axes but allows more fine-grained control over tick labels and text positioning by supplying callback functions. Within the callback function you can use normal GR text primitives for performing any manipulations on the label text.
See axes for more details on drawing axes.
Parameters
x_tick: The interval between minor tick marks on the X axis.y_tick: The interval between minor tick marks on the Y axis.x_org: The world coordinate of the origin (point of intersection) of the X axis.y_org: The world coordinate of the origin (point of intersection) of the Y axis.major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa).fpx: Function pointer to a function that returns a label for a given tick on the X axis. The callback function should have the following arguments:x: NDC of the label in X direction.y: NDC of the label in Y direction.svalue: Internal string representation of the text drawn by GR at (x,y).value: Floating point representation of the label drawn at (x,y).fpy: Exactly same as the fpx above, but for the the Y axis.val axes3d :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float * float) ->
?major:(int * int * int) ->
?tick_size:float ->
float ->
float ->
float ->
unitaxes3d ?scale ?linetype ?linewidth ?origin:(0,0,0) ?major:(1,1,1) ?size:1 x_tick y_tick z_tick draws X, Y and Z coordinate axes with linearly and/or logarithmically spaced tick marks. Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window.
Parameters
x_tick: The interval between minor tick marks on the X axis.y_tick: The interval between minor tick marks on the Y axis.z_tick: The length in world coordinates of the interval between minor grid lines in Z direction.x_org: The world coordinate of the origin (point of intersection) of the X axis.y_org: The world coordinate of the origin (point of intersection) of the Y axis.z_org: The world coordinate of the origin (point of intersection) of the Z axis.major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.major_z: Unitless integer value specifying the number of minor grid lines between major grid lines on the Z axis. Values of 0 or 1 imply no grid lines.tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa)val surface :
?options:surface_options ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
unitsurface x y z ?option draws a three-dimensional surface plot for the given data points.
Here, x and y define a grid, z is a singly dimensioned array containing at least nx * ny data points. z describes the surface height at each point on the grid.
Parameters
x: X coordinatesy: Y coordinatesz: Z coordinatesoption: Surface display optionval contour :
?major_h:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(float, 'g, 'h) Bigarray.Genarray.t ->
unitcontour ?major_h x y h z sraw contours of a three-dimensional data set whose values are specified over a rectangular mesh. Contour lines may optionally be labeled.
Parameters
x: X coordinatesy: Y coordinatesh: height valuespz: Z coordinatesmajor_h: Directs GR to label contour lines. For example, a value of 3 would label every third line. A value of 1 will label every line. A value of 0 produces no labels. To produce colored contour lines, add an offset of 1000 to major_h.val contourf :
?major_h:int ->
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(float, 'g, 'h) Bigarray.Genarray.t ->
unitcontourf ?(major_h = 0) x y h z draws filled contour plot of a three-dimensional data set whose values are specified over a rectangular mesh.
Parameters
x: X coordinatesy: Y coordinatesh: height values. If NULL, use nh evenly distributed height values between minimum and maximum Z value.major_h: Directs GR to label contour lines. For example, a value of 3 would label every third line. A value of 1 will label every line. A value of 0 produces no labels. To produce colored contour lines, add an offset of 1000 to major_hval grid :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
float ->
float ->
unitgrid ?scale ?linetype ?linewidth ?origin:(0,0) ?major:(1,1) x_tick y_tick draws a linear and/or logarithmic grid.
Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.
Parameters
x_tick: The length in world coordinates of the interval between minor grid lines in X direction.y_tick: The length in world coordinates of the interval between minor grid lines in Y direction.x_org: The world coordinate of the origin (point of intersection) of the X axis.y_org: The world coordinate of the origin (point of intersection) of the Y axis.major_x: Unitless integer value specifying the number of minor grid lines between major grid lines on the X axis. Values of 0 or 1 imply no grid lines.major_y: Unitless integer value specifying the number of minor grid lines between major grid lines on the Y axis. Values of 0 or 1 imply no grid lines.val grid3d :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float * float) ->
?major:(int * int * int) ->
float ->
float ->
float ->
unitgrid3d ?scale ?linetype ?linewidth ?origin:(0,0,0) ?major:(1,1,1) x_tick y_tick z_tick draws a linear and/or logarithmic grid.
Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.
Parameters
x_tick: The length in world coordinates of the interval between minor grid lines in X direction.y_tick: The length in world coordinates of the interval between minor grid lines in Y direction.z_tick: The length in world coordinates of the interval between minor grid lines in Z direction.x_org: The world coordinate of the origin (point of intersection) of the X axis.y_org: The world coordinate of the origin (point of intersection) of the Y axis.z_org: The world coordinate of the origin (point of intersection) of the Z axis.major_x: Unitless integer value specifying the number of minor grid lines between major grid lines on the X axis. Values of 0 or 1 imply no grid lines.major_y: Unitless integer value specifying the number of minor grid lines between major grid lines on the Y axis. Values of 0 or 1 imply no grid lines.major_z: Unitless integer value specifying the number of minor grid lines between major grid lines on the Z axis. Values of 0 or 1 imply no grid lines.val vertical_errorbars :
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(float, 'g, 'h) Bigarray.Genarray.t ->
unitvertical_errorbars x y el eu draws a standard vertical error bar graph.
Parameters
px: X coordinatespy: Y coordinatesel: absolute values of the lower error bar dataeu: absolute values of the upper error bar dataval horizontal_errorbars :
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(float, 'g, 'h) Bigarray.Genarray.t ->
unithorizontal_errorbars x y el eu draws a standard horizontal error bar graph.
Parameters
px: X coordinatespy: Y coordinatesel: absolute values of the lower error bar dataeu: absolute values of the upper error bar datatitles3d x_title y_title z_title displays axis titles just outside of their respective axes.
Parameters
x_title: The text to be displayed on the X axisy_title: The text to be displayed on the Y axisz_title: The text to be displayed on the Z axisval tricontour :
(float, 'a, 'b) Bigarray.Genarray.t ->
(float, 'c, 'd) Bigarray.Genarray.t ->
(float, 'e, 'f) Bigarray.Genarray.t ->
(float, 'g, 'h) Bigarray.Genarray.t ->
unittricontour x y z levels draws a contour plot for the given triangle mesh.
Parameters
x: X coordinatesy: Y coordinatesz: Z coordinateslevels: contour levelscolorbar () plots a colorbar.
val drawrect :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
unitdrawrect ?linetype ?linewidth ?coloridx left right bottom up draws a rectangle.
Parameters
left: Left edge of the rectangleright: Right edge of the rectanglebottom: Bottom edge of the rectangleup: Upper edge of the rectangleval fillrect :
?fillstyle:fill_style ->
?fillcoloridx:int ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
unitfillrect ?fillstyle ?fillcoloridx ?linetype ?linewidth ?coloridx left right bottom up draws a filled rectangle.
Parameters
left: Left edge of the rectangleright: Right edge of the rectanglebottom: Bottom edge of the rectangleup: Upper edge of the rectangleval drawarc :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
int ->
int ->
unitdrawarc ?linetype ?linewidth ?coloridx left right bottom up a1 a2 draws a circular or elliptical arc covering the specified rectangle.
The resulting arc begins at a1 and ends at a2 degrees. Angles are interpreted such that 0 degrees is at the 3 o’clock position. The center of the arc is the center of the given rectangle.
Parameters
left: Left edge of the rectangleright: Right edge of the rectanglebottom: Bottom edge of the rectangleup: Upper edge of the rectanglea1: The start anglea2: The end angleval fillarc :
?fillstyle:fill_style ->
?fillcoloridx:int ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
int ->
int ->
unitfillarc ?fillstyle ?fillcoloridx ?linetype ?linewidth ?coloridx left right bottom up draws a filled circular or elliptical arc covering the specified rectangle.
The resulting arc begins at a1 and ends at a2 degrees. Angles are interpreted such that 0 degrees is at the 3 o’clock position. The center of the arc is the center of the given rectangle.
Parameters
left: Left edge of the rectangleright: Right edge of the rectanglebottom: Bottom edge of the rectangleup: Upper edge of the rectanglea1: The start anglea2: The end angleval drawpath :
(float * float) array ->
[< `CLOSEPOLY | `CURVE3 | `CURVE4 | `LINETO | `MOVETO | `STOP ] array ->
bool ->
unitdrawpath vertices codes fill draws simple and compound outlines consisting of line segments and bezier curves.
The following path codes are recognized:
Parameters
vertices: the vertices (x,y)codes: path codesfill: A flag indication whether resulting path is to be filled or notval drawarrow :
?arrowsize:float ->
?arrowstyle:int ->
(float * float) ->
(float * float) ->
unitdrawarrow ?arrowsize ?arrowstyle (x1, y1) (x2, y2) draws an arrow between two points.
Different arrow styles (angles between arrow tail and wing, optionally filled heads, double headed arrows) are available. Check the documentation of set_arrowstyle and set_arrowsize for more information.
Parameters
x1: The X coordinate of the arrow start point (tail)y1: The Y coordinate of the arrow start point (tail)x2: The X coordinate of the arrow end point (head)y2: The Y coordinate of the arrow end point (head)val drawimage :
(float * float) ->
(float * float) ->
(int, 'a, 'b) Bigarray.Genarray.t ->
[< `HSV | `RGB ] ->
unitdrawimage (xmin, ymin) (xmax, ymax) image_data model draws an image into a given rectangular area.
The points (xmin, ymin) and (xmax, ymax) are world coordinates defining diagonally opposite corner points of a rectangle. This rectangle is divided into width by height cells. The two-dimensional array data specifies colors for each cell.
Parameters
xmin: X coordinate of the lower left point of the rectangleymin: Y coordinate of the lower left point of the rectanglexmax: X coordinate of the upper right point of the rectangleymax: Y coordinate of the upper right point of the rectanglewidth: X dimension of the color index arrayheight: Y dimension of the color index arraydata: color arraymodel: color modelThe available color models are: