Library
Module
Module type
Parameter
Class
Class type
GR is based on an implementation of a Graphical Kernel System (GKS) and OpenGL. As a self-contained system it can quickly and easily be integrated into existing applications.
The GR framework can be used in imperative programming systems or integrated into modern object-oriented systems, in particular those based on GUI toolkits. GR is characterized by its high interoperability and can be used with modern web technologies and mobile devices. The GR framework is especially suitable for real-time environments.
module Lowlevel : sig ... end
type workstation_type =
| WISS
Workstation Independent Segment ptr Storage
*)| WinGDI
Windows ptr GDI
*)| PS_1
PostScript (b/w @-> color)
*)| PS_2
PostScript (b/w @-> color)
*)| PS_3
PostScript (b/w @-> color)
*)| PS_4
PostScript (b/w @-> color)
*)| PDFPlain
Portable Document Format ptr plain
*)| PDFCompressed
Portable Document Format ptr compressed
*)| X_1
X ptr Windows
*)| X_2
X ptr Windows
*)| X_3
X ptr Windows
*)| X_4
X ptr Windows
*)| SunRF
Sun Raster file (RF)
*)| GIF87
Graphics Interchange Format ptr GIF87
*)| GIF89
Graphics Interchange Format ptr GIF89
*)| MotifUIL
Motif User Interface Language (UIL)
*)| BMP
Windows Bitmap (BMP)
*)| JPEG
JPEG image ptr file
*)| PNG
Portable Network Graphics file (PNG)
*)| TIFF
Tagged Image File Format (TIFF)
*)| Gtk
ptr Gtk
*)| Wx
ptr wxWidgets
*)| Qt4
ptr Qt4
*)| SVG
Scaleable Vector Graphics (SVG)
*)| WMF
Windows ptr Metafile
*)| Quartz
ptr Quartz
*)| Sock
Socket ptr driver
*)| ZMQ
0MQ ptr driver
*)| OGL
ptr OpenGL
*)Available workstation types, see also GR Workstation Types
type linetype =
| SOLID
Solid line
*)| DASHED
Dashed line
*)| DOTTED
Dotted line
*)| DASHED_DOTTED
Dashed-dotted line
*)| DASH_2_DOT
Sequence of one dash followed by two dots
*)| DASH_3_DOT
Sequence of one dash followed by three dots
*)| LONG_DASH
Sequence of long dashes
*)| LONG_SHORT_DASH
Sequence of a long dash followed by a short dash
*)| SPACED_DASH
Sequence of dashes double spaced
*)| SPACED_DOT
Sequence of dots double spaced
*)| DOUBLE_DOT
Sequence of pairs of dots
*)| TRIPLE_DOT
Sequence of groups of three dots
*)Available line types, see also GR Line Types
type markertype =
| DOT
Smallest displayable dot
*)| PLUS
Plus sign
*)| ASTERISK
Asterisk
*)| CIRCLE
Hollow circle
*)| DIAGONAL_CROSS
Diagonal cross
*)| SOLID_CIRCLE
Filled circle
*)| TRIANGLE_UP
Hollow triangle pointing upward
*)| SOLID_TRI_UP
Filled triangle pointing upward
*)| TRIANGLE_DOWN
Hollow triangle pointing downward
*)| SOLID_TRI_DOWN
Filled triangle pointing downward
*)| SQUARE
Hollow square
*)| SOLID_SQUARE
Filled square
*)| BOWTIE
Hollow bowtie
*)| SOLID_BOWTIE
Filled bowtie
*)| HGLASS
Hollow hourglass
*)| SOLID_HGLASS
Filled hourglass
*)| DIAMOND
Hollow diamond
*)| SOLID_DIAMOND
Filled Diamond
*)| STAR
Hollow star
*)| SOLID_STAR
Filled Star
*)| TRI_UP_DOWN
Hollow triangles pointing up and down overlaid
*)| SOLID_TRI_RIGHT
Filled triangle point right
*)| SOLID_TRI_LEFT
Filled triangle pointing left
*)| HOLLOW_PLUS
Hollow plus sign
*)| SOLID_PLUS
Solid plus sign
*)| PENTAGON
Pentagon
*)| HEXAGON
Hexagon
*)| HEPTAGON
Heptagon
*)| OCTAGON
Octagon
*)| STAR_4
4-pointed star
*)| STAR_5
5-pointed star (pentagram)
*)| STAR_6
6-pointed star (hexagram)
*)| STAR_7
7-pointed star (heptagram)
*)| STAR_8
8-pointed star (octagram)
*)| VLINE
verical line
*)| HLINE
horizontal line
*)| OMARK
o-mark
*)Available marker types, see also GR Marker Types
type font =
| TIMES_ROMAN
| TIMES_ITALIC
| TIMES_BOLD
| TIMES_BOLDITALIC
| HELVETICA
| HELVETICA_OBLIQUE
| HELVETICA_BOLD
| HELVETICA_BOLDOBLIQUE
| COURIER
| COURIER_OBLIQUE
| COURIER_BOLD
| COURIER_BOLDOBLIQUE
| SYMBOL
| BOOKMAN_LIGHT
| BOOKMAN_LIGHTITALIC
| BOOKMAN_DEMI
| BOOKMAN_DEMIITALIC
| NEWCENTURYSCHLBK_ROMAN
| NEWCENTURYSCHLBK_ITALIC
| NEWCENTURYSCHLBK_BOLD
| NEWCENTURYSCHLBK_BOLDITALIC
| AVANTGARDE_BOOK
| AVANTGARDE_BOOKOBLIQUE
| AVANTGARDE_DEMI
| AVANTGARDE_DEMIOBLIQUE
| PALATINO_ROMAN
| PALATINO_ITALIC
| PALATINO_BOLD
| PALATINO_BOLDITALIC
| ZAPFCHANCERY_MEDIUMITALIC
| ZAPFDINGBATS
Pattern style, see also GR Fill Patterns and Hatches
val pattern_style : int -> pattern_style
Hatch style, see also GR Fill Patterns and Hatches
val hatch_style : int -> hatch_style
type fill_style =
| HOLLOW
No filling. Just draw the bounding polyline
*)| SOLID
Fill the interior of the polygon using the fill color index
*)| PATTERN of pattern_style
Fill the interior of the polygon using the style index as a pattern index
*)| HATCH of hatch_style
Fill the interior of the polygon using the style index as a cross-hatched style
*)type color_map =
| Uniform
| Temperature
| Grayscale
| Glowing
| Rainbowlike
| Geologic
| Greenscale
| Cyanscale
| Bluescale
| Magentascale
| Redscale
| Flame
| Brownscale
| Pilatus
| Autumn
| Bone
| Cool
| Copper
| Gray
| Hot
| Hsv
| Jet
| Pink
| Spectral
| Spring
| Summer
| Winter
| Gist_Earth
| Gist_Heat
| Gist_Ncar
| Gist_Rainbow
| Gist_Stern
| Afmhot
| Brg
| Bwr
| Coolwarm
| Cmrmap
| Cubehelix
| Gnuplot
| Gnuplot2
| Ocean
| Rainbow
| Seismic
| Terrain
| Viridis
| Inferno
| Plasma
| Magma
Color Maps, see also GR Color Maps
type surface_options =
| LINES
Use X Y polylines to denote the surface
*)| MESH
Use a wire grid to denote the surface
*)| FILLED_MESH
Applies an opaque grid to the surface
*)| Z_SHADED_MESH
Applies Z-value shading to the surface
*)| COLORED_MESH
Applies a colored grid to the surface
*)| CELL_ARRAY
Applies a grid of individually-colored cells to the surface
*)| SHADED_MESH
Applies light source shading to the 3-D surface
*)module Workstation : sig ... end
module Gks : sig ... end
module State : sig ... end
set_window xmin xmax ymin ymax
establishes a window, or rectangular subspace, of world coordinates to be plotted. If you desire log scaling or mirror-imaging of axes, use the gr_setscale function.
This function defines the rectangular portion of the World Coordinate space (WC) to be associated with the specified normalization transformation. The WC window and the Normalized Device Coordinates (NDC) viewport define the normalization transformation through which all output primitives are mapped. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates. By default, GR uses the range 0,1
x 0,1
, in world coordinates, as the normalization transformation window.
Parameters
xmin: The left horizontal coordinate of the window (xmin < xmax). xmax: The right horizontal coordinate of the window (xmin < xmax). ymin: The bottom vertical coordinate of the window (ymin < ymax). ymax: The top vertical coordinate of the window (ymin < ymax).
set_viewport xmin xmax ymin ymax
establishes a rectangular subspace of normalized device coordinates.
This function defines the rectangular portion of the Normalized Device Coordinate (NDC) space to be associated with the specified normalization transformation. The NDC viewport and World Coordinate (WC) window define the normalization transformation through which all output primitives pass. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates.
Parameters
xmin: The left horizontal coordinate of the viewport (0 <= xmin < xmax). xmax: The right horizontal coordinate of the viewport (xmin < xmax <= 1). ymin: The bottom vertical coordinate of the viewport (0 <= ymin < ymax). ymax: The top vertical coordinate of the viewport (ymin < ymax <= 1).
select_transformation transform
selects a predefined transformation from world coordinates to normalized device coordinates.
0 Selects the identity transformation in which both the window and viewport have the range of 0 to 1 >= 1 Selects a normalization transformation as defined by set_window
and set_viewport
Parameters transform: A normalization transformation number.
clip indicator
sets the clipping indicator.
false Clipping is off. Data outside of the window will be drawn. true Clipping is on. Data outside of the window will not be drawn.
Parameters indicator: An indicator specifying whether clipping is on or off.
This function enables or disables clipping of the image drawn in the current window. Clipping is defined as the removal of those portions of the graph that lie outside of the defined viewport. If clipping is on, GR does not draw generated output primitives past the viewport boundaries. If clipping is off, primitives may exceed the viewport boundaries, and they will be drawn to the edge of the workstation window. By default, clipping is on.
val segment : int -> segment
val create_segment : segment -> unit
val set_segment_transform :
segment ->
float ->
float ->
float ->
float ->
float ->
float ->
float ->
unit
set_space zmin zmax rotation tilt
sets the abstract Z-space used for mapping three-dimensional output primitives into the current world coordinate space.
This function establishes the limits of an abstract Z-axis and defines the angles for rotation and for the viewing angle (tilt) of a simulated three-dimensional graph, used for mapping corresponding output primitives into the current window. These settings are used for all subsequent three-dimensional output primitives until other values are specified. Angles of rotation and viewing angle must be specified between 0 and 90 degrees.
Parameters zmin: Minimum value for the Z-axis. zmax: Maximum value for the Z-axis. rotation: Angle for the rotation of the X axis, in degrees. tilt: Viewing angle of the Z axis, in degrees.
val set_linetype : linetype -> unit
set_linewidth lw
defines the line width of subsequent polyline output primitives.
The line width is calculated as the nominal line width generated on the workstation multiplied by the line width scale factor. This value is mapped by the workstation to the nearest available line width. The default line width is 1.0, or 1 times the line width generated on the graphics device.
set_linecolorindex c
defines the color of subsequent polyline output primitives. Note: c < 1256
val set_markertype : markertype -> unit
set_markersize ms
specify the marker size for polymarkers.
The polymarker size is calculated as the nominal size generated on the graphics device multiplied by the marker size scale factor.
set_markercolorindex c
define the color of subsequent markers output primitives. Note: c < 1256
set_arrowstyle style
sets the arrow style to be used for subsequent arrow commands.
This function defines the arrow style for subsequent arrow primitives. The default arrow style is 1.
Parameters style: The arrow style to be used. Available styles are:
1 simple, single-ended 2 simple, single-ended, acute head 3 hollow, single-ended 4 filled, single-ended 5 triangle, single-ended 6 filled triangle, single-ended 7 kite, single-ended 8 filled kite, single-ended 9 simple, double-ended 10 simple, double-ended, acute head 11 hollow, double-ended 12 filled, double-ended 13 triangle, double-ended 14 filled triangle, double-ended 15 kite, double-ended 16 filled kite, double-ended 17 double line, single-ended 18 double line, double-ended
TODO: Use a sum type.
val set_text_font_prec : ?precision:text_precision -> font -> unit
set_text_font_prec ?precision font
specifies the text font and precision for subsequent text output primitives.
The appearance of a font depends on the text precision value specified. STRING, CHARACTER or STROKE precision allows for a greater or lesser realization of the text primitives, for efficiency. STRING is the default precision for GR and produces the highest quality output.
XXX: CHARACTER and STROKE precision seem to be broken (and to break the axes
command with it...)!
set_char_expand_factor factor
sets the current character expansion factor (width to height ratio).
This function defines the width of subsequent text output primitives. The expansion factor alters the width of the generated characters, but not their height. The default text expansion factor is 1, or one times the normal width-to-height ratio of the text.
Parameters factor: Text expansion factor applied to the nominal text width-to-height ratio
set_text_colorindex color
sets the current text color index.
This function defines the color of subsequent text output primitives. GR uses the default foreground color (black=1) for the default text color index.
Parameters color: The text color index (COLOR < 1256)
set_char_height height
sets the current character height.
This function defines the height of subsequent text output primitives. Text height is defined as a percentage of the default window. GR uses the default text height of 0.027 (2.7% of the height of the default window).
set_char_up (x, y)
Set the current character text angle up vector. This function defines the vertical rotation of subsequent text output primitives. The text up vector is initially set to (0, 1), horizontal to the baseline.
Parameters x: X coordinate of the text up vector y: Y coordinate of the text up vector
val set_text_path : text_path_direction -> unit
set_text_path direction
defines the current direction in which subsequent text will be drawn.
val set_text_align : text_halign option -> text_valign option -> unit
set_text_align horizontal vertical
specifies how the characters in a text primitive will be aligned in horizontal and vertical space. The default text alignment indicates horizontal left alignment and vertical baseline alignment.
val set_fill_interior_style : fill_style -> unit
set_fill_interior_style style
sets the fill area interior style to be used for fill areas.
This function defines the interior style for subsequent fill area output primitives. The default interior style is HOLLOW.
set_fill_colorindex color
sets the current fill area color index.
This function defines the color of subsequent fill area output primitives. GR uses the default foreground color (black=1) for the default fill area color index.
Parameters color: The fill area color index (COLOR < 1256)
set_color_representation index (red, green, blue)
redefines an existing color index representation by specifying an RGB color triplet.
Parameters index: Color index in the range 0 to 1256 red: Red intensity in the range 0.0 to 1.0 green: Green intensity in the range 0.0 to 1.0 blue: Blue intensity in the range 0.0 to 1.0
val set_colormap : color_map -> unit
set_colormap cmap
sets the currently used colormap.
A list of colormaps can be found at: GR Colormaps.
val set_scale : scale_options list -> int
set_shadow (offsetx, offsety) blur
Allows drawing of shadows, realized by images painted underneath, and offset from, graphics objects such that the shadow mimics the effect of a light source cast on the graphics objects.
Parameters offsetx: An x-offset, which specifies how far in the horizontal direction the shadow is offset from the object offsety: A y-offset, which specifies how far in the vertical direction the shadow is offset from the object blur: A blur value, which specifies whether the object has a hard or a diffuse edge
set_transparency alpha
sets the value of the alpha component associated with GR colors.
Parameters alpha: An alpha value (0.0 - 1.0)
set_coord_transform transform
Change the coordinate transformation according to the given matrix. Parameters mat: 2D transformation matrix (3x2)
module Graphics : sig ... end
val polyline :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
unit
polyline ?linetype ?linewidth ?coloridx x y
draws a polyline using the current line attributes, starting from the first data point and ending at the last data point.
The values for x
and y
are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.
val polyline3d :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
unit
polyline3d ?linetype ?linewidth ?coloridx x y z
draws a polyline using the current line attributes, starting from the first data point and ending at the last data point.
The values for x
, y
and z
are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.
val polymarker :
?markertype:markertype ->
?markersize:float ->
?coloridx:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
unit
polymarker ?markertype ?markersize ?coloridx x y
draws marker symbols centered at the given data points.
The values for x
and y
are in world coordinates. The attributes that control the appearance of a polyline are markertype, markersize and color index.
val polymarker3d :
?markertype:markertype ->
?markersize:float ->
?coloridx:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
unit
polymarker3d ?markertype ?markersize ?coloridx x y z
draws marker symbols centered at the given data points.
The values for x
, y
and z
are in world coordinates. The attributes that control the appearance of a polyline are markertype, markersize and color index.
text x y content
draws a text at position x
, y
using the current text attributes.
The values for x
and y
are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.
val fillarea :
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
unit
fillarea x y
allows you to specify a polygonal shape of an area to be filled. The vectors x
and y
specify the coordinates of the polygonal shape corners.
The attributes that control the appearance of fill areas are fill area interior style, fill area style index and fill area color index.
val cellarray :
(float * float) ->
(float * float) ->
(int * int) ->
(int * int) ->
(int * int) ->
(int, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
unit
cellarray (xmin, xmax) (ymin, ymax) (dimx, dimy) (scol, srow) (ncol, nrow) color
displays rasterlike images in a device-independent manner. The cell array function partitions a rectangle given by two corner points into DIMX X DIMY cells, each of them colored individually by the corresponding color index of the given cell array.
The values for xmin, xmax, ymin and ymax are in world coordinates.
Parameters: xmin: X coordinate of the lower left point of the rectangle ymin: Y coordinate of the lower left point of the rectangle xmax: X coordinate of the upper right point of the rectangle ymax: Y coordinate of the upper right point of the rectangle dimx: X dimension of the color index array dimy: Y dimension of the color index array scol: number of leading columns in the color index array srow: number of leading rows in the color index array ncol: total number of columns in the color index array nrow: total number of rows in the color index array color: color index array
Note: gr_nonuniformcellarray and gr_polycellarray have been introduced in newer versions of gr.
val spline :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
int ->
spline_algo ->
unit
spline ?linetype ?linewidth ?coloridx x y m method_t
generates a cubic spline-fit, starting from the first data point and ending at the last data point.
The values for x
and y
are in world coordinates. The attributes that control the appearance of a spline-fit are linetype, linewidth and color index.
Parameters x: The X coordinates y: The Y coordinates m: The number of points in the polygon to be drawn (m > n) method: The smoothing method
If method is > 0, then a generalized cross-validated smoothing spline is calculated. If method is 0, then an interpolating natural cubic spline is calculated. If method is < -1, then a cubic B-spline is calculated.
val gridit :
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(int * int) ->
(float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.c_layout)
Stdlib.Bigarray.Genarray.t
* (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.c_layout)
Stdlib.Bigarray.Genarray.t
* (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigarray.c_layout)
Stdlib.Bigarray.Genarray.t
gridit x y z (nx, ny)
interpolates data from arbitrary points at points on a rectangular grid.
Parameters
x: The X coordinates of the input points y: The Y coordinates of the input points z: The values of the points nx: The number of points in X direction for the output grid ny: The number of points in Y direction for the output grid
Returns the tuple (x', y', z') with
x': The points in X direction for the output grid y': The points in Y direction for the output grid z': The interpolated values on the nx x ny grid points
tex_text (x, y) text
draws a text at position x, y using the current text attributes. Strings can be defined to create basic mathematical expressions and Greek letters.
The values for X and Y are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.
Parameters x: The X coordinate of starting position of the text string y: The Y coordinate of starting position of the text string text: The text to be drawn
The character string is interpreted to be a simple mathematical formula. The following notations apply:
To include a Greek letter you must specify the corresponding keyword after a backslash (‘') character. The text translator produces uppercase or lowercase Greek letters depending on the case of the keyword. For more sophisticated mathematical formulas, you should use the gr_mathtex function.
See the full documentation at GR Documentation for gr_textext.
math_tex (x, y) tex
generates a character string starting at the given location. Strings can be defined to create mathematical symbols and Greek letters using LaTeX syntax.
Parameters x: The X coordinate of the starting position of the text string y: The Y coordinate of the starting position of the text string tex: The TeX text string to be drawn
val axes :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
?tick_size:float ->
float ->
float ->
unit
axes ?scale ?linetype ?linewidth ?origin:(0,0) ?major:(0,0) ?size:1 x_tick y_tick
draws X and Y coordinate axes with linearly and/or logarithmically spaced tick marks. Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window.
Parameters x_tick: The interval between minor tick marks on the X axis. y_tick: The interval between minor tick marks on the Y axis. x_org: The world coordinate of the origin (point of intersection) of the X axis. y_org: The world coordinate of the origin (point of intersection) of the Y axis. major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa)
val axes_labels :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
?tick_size:float ->
(float -> float -> string -> float -> unit) ->
(float -> float -> string -> float -> unit) ->
float ->
float ->
unit
axes_labels ?(scale = []) ?linetype ?linewidth ?coloridx ?(origin = 0.0, 0.0) ?(major = 0, 0) ?(tick_size = -0.01) (fpx : float -> float -> string -> float -> unit) (fpy : float -> float -> string -> float -> unit) x_tick y_tick
creates axes in the current workspace and supply a custom function for changing the behaviour of the tick labels.
Similar to axes
but allows more fine-grained control over tick labels and text positioning by supplying callback functions. Within the callback function you can use normal GR text primitives for performing any manipulations on the label text.
See axes
for more details on drawing axes.
Parameters
x_tick: The interval between minor tick marks on the X axis. y_tick: The interval between minor tick marks on the Y axis. x_org: The world coordinate of the origin (point of intersection) of the X axis. y_org: The world coordinate of the origin (point of intersection) of the Y axis. major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa). fpx: Function pointer to a function that returns a label for a given tick on the X axis. The callback function should have the following arguments: x: NDC of the label in X direction. y: NDC of the label in Y direction. svalue: Internal string representation of the text drawn by GR at (x,y). value: Floating point representation of the label drawn at (x,y). fpy: Exactly same as the fpx above, but for the the Y axis.
val axes3d :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float * float) ->
?major:(int * int * int) ->
?tick_size:float ->
float ->
float ->
float ->
unit
axes3d ?scale ?linetype ?linewidth ?origin:(0,0) ?major:(0,0) ?size:1 x_tick y_tick
draws X, Y and Z coordinate axes with linearly and/or logarithmically spaced tick marks. Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window.
Parameters x_tick: The interval between minor tick marks on the X axis. y_tick: The interval between minor tick marks on the Y axis. z_tick: The length in world coordinates of the interval between minor grid lines in Z direction. x_org: The world coordinate of the origin (point of intersection) of the X axis. y_org: The world coordinate of the origin (point of intersection) of the Y axis. z_org: The world coordinate of the origin (point of intersection) of the Z axis. major_x: Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. major_y: Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis. major_z: Unitless integer value specifying the number of minor grid lines between major grid lines on the Z axis. Values of 0 or 1 imply no grid lines. tick_size: The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa)
val surface :
?options:surface_options ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
unit
surface x y z ?option
draws a three-dimensional surface plot for the given data points.
x and y define a grid. z is a singly dimensioned array containing at least nx * ny data points. z describes the surface height at each point on the grid. Data is ordered as shown in the following table:
Parameters
nx: The number of points along the X axis ny: The number of points along the Y axis px: A pointer to the X coordinates py: A pointer to the Y coordinates pz: A pointer to the Z coordinates option: Surface display option (see table)
val contour :
?major_h:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(float, 'g, 'h) Stdlib.Bigarray.Genarray.t ->
unit
contour ?major_h x y h z
sraw contours of a three-dimensional data set whose values are specified over a rectangular mesh. Contour lines may optionally be labeled.
Parameters
nx: The number of points along the X axis ny: The number of points along the Y axis nh: The number of height values px: A pointer to the X coordinates py: A pointer to the Y coordinates h: A pointer to the height values pz: A pointer to the Z coordinates major_h: Directs GR to label contour lines. For example, a value of 3 would label every third line. A value of 1 will label every line. A value of 0 produces no labels. To produce colored contour lines, add an offset of 1000 to major_h
val contourf :
?major_h:int ->
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(float, 'g, 'h) Stdlib.Bigarray.Genarray.t ->
unit
contourf ?(major_h = 0) x y h z
draws filled contour plot of a three-dimensional data set whose values are specified over a rectangular mesh.
Parameters px: A pointer to the X coordinates py: A pointer to the Y coordinates h: A pointer to the height values. If NULL, use nh evenly distributed height values between minimum and maximum Z value. major_h: Directs GR to label contour lines. For example, a value of 3 would label every third line. A value of 1 will label every line. A value of 0 produces no labels. To produce colored contour lines, add an offset of 1000 to major_h
val grid :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float) ->
?major:(int * int) ->
float ->
float ->
unit
grid ?scale ?linetype ?linewidth ?origin:(0,0) ?major:(0,0) x_tick y_tick
draws a linear and/or logarithmic grid.
Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.
Parameters
x_tick: The length in world coordinates of the interval between minor grid lines in X direction. y_tick: The length in world coordinates of the interval between minor grid lines in Y direction. x_org: The world coordinate of the origin (point of intersection) of the X axis. y_org: The world coordinate of the origin (point of intersection) of the Y axis. major_x: Unitless integer value specifying the number of minor grid lines between major grid lines on the X axis. Values of 0 or 1 imply no grid lines. major_y: Unitless integer value specifying the number of minor grid lines between major grid lines on the Y axis. Values of 0 or 1 imply no grid lines.
val grid3d :
?scale:scale_options list ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
?origin:(float * float * float) ->
?major:(int * int * int) ->
float ->
float ->
float ->
unit
grid3d ?scale ?linetype ?linewidth ?origin:(0,0,0) ?major:(0,0,0) x_tick y_tick z_tick
draws a linear and/or logarithmic grid.
Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.
Parameters
x_tick: The length in world coordinates of the interval between minor grid lines in X direction. y_tick: The length in world coordinates of the interval between minor grid lines in Y direction. z_tick: The length in world coordinates of the interval between minor grid lines in Z direction. x_org: The world coordinate of the origin (point of intersection) of the X axis. y_org: The world coordinate of the origin (point of intersection) of the Y axis. z_org: The world coordinate of the origin (point of intersection) of the Z axis. major_x: Unitless integer value specifying the number of minor grid lines between major grid lines on the X axis. Values of 0 or 1 imply no grid lines. major_y: Unitless integer value specifying the number of minor grid lines between major grid lines on the Y axis. Values of 0 or 1 imply no grid lines. major_z: Unitless integer value specifying the number of minor grid lines between major grid lines on the Z axis. Values of 0 or 1 imply no grid lines.
val vertical_errorbars :
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(float, 'g, 'h) Stdlib.Bigarray.Genarray.t ->
unit
vertical_errorbars x y el eu
draws a standard vertical error bar graph.
Parameters px: A pointer to the X coordinates py: A pointer to the Y coordinates el: A pointer to the absolute values of the lower error bar data eu: A pointer to the absolute values of the upper error bar data
val horizontal_errorbars :
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(float, 'g, 'h) Stdlib.Bigarray.Genarray.t ->
unit
horizontal_errorbars x y el eu
draws a standard horizontal error bar graph.
Parameters px: A pointer to the X coordinates py: A pointer to the Y coordinates el: A pointer to the absolute values of the lower error bar data eu: A pointer to the absolute values of the upper error bar data
titles3d x_title y_title z_title
displays axis titles just outside of their respective axes.
Parameters x_title: The text to be displayed on the X axis y_title: The text to be displayed on the Y axis z_title: The text to be displayed on the Z axis
val tricontour :
(float, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
(float, 'c, 'd) Stdlib.Bigarray.Genarray.t ->
(float, 'e, 'f) Stdlib.Bigarray.Genarray.t ->
(float, 'g, 'h) Stdlib.Bigarray.Genarray.t ->
unit
tricontour x y z levels
draws a contour plot for the given triangle mesh.
Parameters x: A pointer to the X coordinates y: A pointer to the Y coordinates z: A pointer to the Z coordinates levels: A pointer to the contour levels
module Print : sig ... end
val drawrect :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
unit
drawrect ?linetype ?linewidth ?coloridx left right bottom up
draws a rectangle.
Parameters left: Left edge of the rectangle right: Right edge of the rectangle bottom: Bottom edge of the rectangle up: Upper edge of the rectangle
val fillrect :
?fillstyle:fill_style ->
?fillcoloridx:int ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
unit
fillrect ?fillstyle ?fillcoloridx ?linetype ?linewidth ?coloridx left right bottom up
draws a filled rectangle.
Parameters left: Left edge of the rectangle right: Right edge of the rectangle bottom: Bottom edge of the rectangle up: Upper edge of the rectangle
val drawarc :
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
int ->
int ->
unit
drawarc ?linetype ?linewidth ?coloridx left right bottom up a1 a2
draws a circular or elliptical arc covering the specified rectangle.
The resulting arc begins at a1 and ends at a2 degrees. Angles are interpreted such that 0 degrees is at the 3 o’clock position. The center of the arc is the center of the given rectangle.
Parameters left: Left edge of the rectangle right: Right edge of the rectangle bottom: Bottom edge of the rectangle up: Upper edge of the rectangle a1: The start angle a2: The end angle
val fillarc :
?fillstyle:fill_style ->
?fillcoloridx:int ->
?linetype:linetype ->
?linewidth:float ->
?coloridx:int ->
float ->
float ->
float ->
float ->
int ->
int ->
unit
fillarc ?fillstyle ?fillcoloridx ?linetype ?linewidth ?coloridx left right bottom up
draws a filled circular or elliptical arc covering the specified rectangle.
The resulting arc begins at a1 and ends at a2 degrees. Angles are interpreted such that 0 degrees is at the 3 o’clock position. The center of the arc is the center of the given rectangle.
Parameters left: Left edge of the rectangle right: Right edge of the rectangle bottom: Bottom edge of the rectangle up: Upper edge of the rectangle a1: The start angle a2: The end angle
val drawpath :
(float * float) array ->
[< `CLOSEPOLY | `CURVE3 | `CURVE4 | `LINETO | `MOVETO | `STOP ] array ->
bool ->
unit
drawpath vertices codes fill
draws simple and compound outlines consisting of line segments and bezier curves.
The following path codes are recognized: `STOP end the entire path `MOVETO move to the given vertex `LINETO draw a line from the current position to the given vertex `CURVE3 draw a quadratic Bezier curve `CURVE4 draw a cubic Bezier curve `CLOSEPOLY draw a line segment to the start point of the current path
Parameters vertices: the vertices (x,y) codes: path codes fill: A flag indication whether resulting path is to be filled or not
drawarrow ?arrowsize ?arrowstyle (x1, y1) (x2, y2)
draws an arrow between two points.
Different arrow styles (angles between arrow tail and wing, optionally filled heads, double headed arrows) are available. Check the documentation of set_arrowstyle
and set_arrowsize
for more information.
Parameters
x1: The X coordinate of the arrow start point (tail) y1: The Y coordinate of the arrow start point (tail) x2: The X coordinate of the arrow end point (head) y2: The Y coordinate of the arrow end point (head)
val drawimage :
(float * float) ->
(float * float) ->
(int, 'a, 'b) Stdlib.Bigarray.Genarray.t ->
[< `HSV | `RGB ] ->
unit
drawimage (xmin, ymin) (xmax, ymax) image_data model
draws an image into a given rectangular area.
The points (xmin, ymin) and (xmax, ymax) are world coordinates defining diagonally opposite corner points of a rectangle. This rectangle is divided into width by height cells. The two-dimensional array data specifies colors for each cell.
Parameters
xmin: X coordinate of the lower left point of the rectangle ymin: Y coordinate of the lower left point of the rectangle xmax: X coordinate of the upper right point of the rectangle ymax: Y coordinate of the upper right point of the rectangle width: X dimension of the color index array height: Y dimension of the color index array data: color array model: color model
The available color models are: RGB 0 AABBGGRR HSV 1 AAVVSSHH
module Selection : sig ... end