package goblint
Install
    
    dune-project
 Dependency
Authors
Maintainers
Sources
sha256=452d8491527aea21f2cbb11defcc14ba0daf9fdb6bdb9fc0af73e56eac57b916
    
    
  sha512=1993cd45c4c7fe124ca6e157f07d17ec50fab5611b270a434ed1b7fb2910aa85a8e6eaaa77dad770430710aafb2f6d676c774dd33942d921f23e2f9854486551
    
    
  doc/goblint_cdomain_value/IntDomain/index.html
Module IntDomain
Abstract domains for C integers.
module type Arith = sig ... endmodule type ArithIkind = sig ... endmodule type B = sig ... endThe signature of integral value domains. They need to support all integer * operations that are allowed in C
module type IkindUnawareS = sig ... endInterface of IntDomain implementations that do not take ikinds for arithmetic operations yet. TODO: Should be ported to S in the future.
module type S = sig ... endInterface of IntDomain implementations taking an ikind for arithmetic operations
module type SOverflow = sig ... endmodule type Y = sig ... endThe signature of integral value domains keeping track of ikind information
module type Ikind = sig ... endmodule PtrDiffIkind : Ikindmodule IntDomTuple : sig ... endval of_const : (Z.t * GoblintCil.Cil.ikind * string option) -> IntDomTuple.tmodule Size : sig ... endmodule BISet : SetDomain.S with type elt = Z.tAn exception that can be raised when the result of a computation is unknown. * This is caught by lifted domains and will be replaced by top.
An exception that can be raised when an arithmetic error occurs. This is * caught by lifted domains and the evaluation will then be set to bot, which * signifies an error in computation
module Integers
  (Ints_t : IntOps.IntOps) : 
  IkindUnawareS with type t = Ints_t.t and type int_t = Ints_t.tPredefined domains
module FlatPureIntegers : 
  IkindUnawareS
    with type t = IntOps.Int64Ops.t
     and type int_t = IntOps.Int64Ops.tThe integers with flattened orderings. Calling top and bot or joining or meeting inequal elements will raise exceptions.
module Flattened : 
  IkindUnawareS
    with type t = [ `Top | `Lifted of IntOps.Int64Ops.t | `Bot ]
     and type int_t = IntOps.Int64Ops.tThis is the typical flattened integer domain used in Kildall's constant * propagation.
module Lifted : 
  IkindUnawareS
    with type t = [ `Top | `Lifted of int64 | `Bot ]
     and type int_t = int64Artificially bounded integers in their natural ordering.
module IntervalFunctor
  (Ints_t : IntOps.IntOps) : 
  SOverflow
    with type int_t = Ints_t.t
     and type t = (Ints_t.t * Ints_t.t) optionmodule IntervalSetFunctor
  (Ints_t : IntOps.IntOps) : 
  SOverflow with type int_t = Ints_t.t and type t = (Ints_t.t * Ints_t.t) listmodule Interval32 : Y with type int_t = IntOps.Int64Ops.tmodule IntervalSet : SOverflow with type int_t = Z.tmodule Congruence : S with type int_t = Z.tThe DefExc domain. The Flattened integer domain is topped by exclusion sets. * Good for analysing branches.
Domain constructors
module Flat
  (Base : IkindUnawareS) : 
  IkindUnawareS
    with type t = [ `Bot | `Lifted of Base.t | `Top ]
     and type int_t = Base.int_tCreates a flat value domain, where all ordering is lost. Arithmetic * operations are lifted such that only lifted values can be evaluated * otherwise the top/bot is simply propagated with bot taking precedence over * top.
module Lift
  (Base : IkindUnawareS) : 
  IkindUnawareS
    with type t = [ `Bot | `Lifted of Base.t | `Top ]
     and type int_t = Base.int_tJust like Value.Flat except the order is preserved.
module Reverse
  (Base : IkindUnawareS) : 
  IkindUnawareS with type t = Base.t and type int_t = Base.int_tReverses bot, top, leq, join, meet
Interval domain with int64-s --- use with caution!