package frama-c
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Platform dedicated to the analysis of source code written in C
Install
dune-project
Dependency
Authors
-
MMichele Alberti
-
TThibaud Antignac
-
GGergö Barany
-
PPatrick Baudin
-
NNicolas Bellec
-
TThibaut Benjamin
-
AAllan Blanchard
-
LLionel Blatter
-
FFrançois Bobot
-
RRichard Bonichon
-
VVincent Botbol
-
QQuentin Bouillaguet
-
DDavid Bühler
-
ZZakaria Chihani
-
SSylvain Chiron
-
LLoïc Correnson
-
JJulien Crétin
-
PPascal Cuoq
-
ZZaynah Dargaye
-
BBasile Desloges
-
JJean-Christophe Filliâtre
-
PPhilippe Herrmann
-
MMaxime Jacquemin
-
BBenjamin Jorge
-
FFlorent Kirchner
-
AAlexander Kogtenkov
-
RRemi Lazarini
-
TTristan Le Gall
-
KKilyan Le Gallic
-
JJean-Christophe Léchenet
-
MMatthieu Lemerre
-
DDara Ly
-
DDavid Maison
-
CClaude Marché
-
AAndré Maroneze
-
TThibault Martin
-
FFonenantsoa Maurica
-
MMelody Méaulle
-
BBenjamin Monate
-
YYannick Moy
-
PPierre Nigron
-
AAnne Pacalet
-
VValentin Perrelle
-
GGuillaume Petiot
-
DDario Pinto
-
VVirgile Prevosto
-
AArmand Puccetti
-
FFélix Ridoux
-
VVirgile Robles
-
JJan Rochel
-
MMuriel Roger
-
CCécile Ruet-Cros
-
JJulien Signoles
-
FFabien Siron
-
NNicolas Stouls
-
HHugo Thievenaz
-
KKostyantyn Vorobyov
-
BBoris Yakobowski
Maintainers
Sources
frama-c-32.0-beta-Germanium.tar.gz
sha256=868d57ef8007fe6c0836cd151d8c294003af34aa678285eff9547662cad36aa3
doc/src/frama-c-region.core/memory.ml.html
Source file memory.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785(**************************************************************************) (* *) (* SPDX-License-Identifier LGPL-2.1 *) (* Copyright (C) *) (* CEA (Commissariat à l'énergie atomique et aux énergies alternatives) *) (* *) (**************************************************************************) open Cil_types open Cil_datatype module Vmap = Varinfo.Map module Vset = Varinfo.Set module Lmap = Map.Make(String) module Lset = Set.Make(String) module LVmap = Logic_var.Map module LVImap = Logic_info.Map (* -------------------------------------------------------------------------- *) (* --- Region Maps --- *) (* -------------------------------------------------------------------------- *) type 'a nlayout = | Blob | Cell of int * 'a option | Compound of int * Fields.domain * 'a Ranges.t (* must only contain strict sub-ranges *) and 'a nchunk = { cparents: 'a list ; cpointed: 'a list ; ccvars: Vset.t ; clabels: Lset.t ; creads: Access.Set.t ; cwrites: Access.Set.t ; cshifts: Access.Set.t ; cinits: Access.Set.t ; clayout: 'a nlayout ; mutable cid : int ; } (* All offsets in bits *) module UF = Store.Make (struct type 'a t = 'a nchunk let get_id c = c.cid let set_id c cid = c.cid <- cid end) type node = UF.node type chunk = node nchunk type layout = node nlayout type rg = node Ranges.range type domain = node Ldomain.t type context = node Ldomain.context type map = { store: UF.store ; mutable labels: node Lmap.t ; mutable cvars: node Vmap.t ; mutable lvars: domain LVmap.t ; mutable logics: domain LVImap.t ; mutable result: node option ; } (* -------------------------------------------------------------------------- *) (* --- Accessors --- *) (* -------------------------------------------------------------------------- *) let bitsSizeOf ty = try Cil.bitsSizeOf ty with | Cil.SizeOfError (_, { tnode = TFun _ }) -> Machine.Sizeof.func () * 8 | Cil.SizeOfError (_, { tnode = TVoid }) -> Machine.Sizeof.void () * 8 let sizeof = function Blob -> 0 | Cell(s,_) | Compound(s,_,_) -> s let cranges = function Blob | Cell _ -> [] | Compound(_,_,R rs) -> rs let cfields = function Blob | Cell _ -> Fields.empty | Compound(_,fds,_) -> fds let cpointed = function Blob | Compound _ -> None | Cell(_,p) -> p let ctypes (m : chunk) : typ list = let pool = ref Typ.Set.empty in let add acs = pool := Typ.Set.add (Ast_types.unroll @@ Access.typeof acs) !pool in Access.Set.iter add m.creads ; Access.Set.iter add m.cwrites ; Access.Set.iter add m.cinits ; Typ.Set.elements !pool (* -------------------------------------------------------------------------- *) (* --- Map Constructors --- *) (* -------------------------------------------------------------------------- *) let create () = { store = UF.create () ; cvars = Vmap.empty ; labels = Lmap.empty ; lvars = LVmap.empty ; logics = LVImap.empty ; result = None; } let empty = { cid = UF.noid ; cparents = [] ; cpointed = [] ; ccvars = Vset.empty ; clabels = Lset.empty ; creads = Access.Set.empty ; cwrites = Access.Set.empty ; cshifts = Access.Set.empty ; cinits = Access.Set.empty ; clayout = Blob ; } (* -------------------------------------------------------------------------- *) (* --- Map --- *) (* -------------------------------------------------------------------------- *) let equal = UF.eq let find = UF.find let find_all = UF.find_all let update (n: node) (f: chunk -> chunk) = UF.set n (f @@ UF.get n) (* -------------------------------------------------------------------------- *) (* --- Printers --- *) (* -------------------------------------------------------------------------- *) let pp_node = UF.pretty let pp_field fields fmt fd = if Options.debug_atleast 1 then Ranges.pp_range fmt fd else Fields.pretty fields fmt fd let pp_layout fmt = function | Blob -> Format.pp_print_string fmt "<blob>" | Cell(s,None) -> Format.fprintf fmt "<%04d>" s | Cell(s,Some n) -> Format.fprintf fmt "<%04d>(*%a)" s pp_node n | Compound(s,fields,rg) -> Format.fprintf fmt "@[<hv 0>{%04d" s ; Ranges.iteri (fun (rg : rg) -> Format.fprintf fmt "@ | %a: %a" (pp_field fields) rg pp_node rg.data ) rg ; Format.fprintf fmt "@ }@]" let pp_chunk name fmt (m: chunk) = begin let acs r s = if Access.Set.is_empty s then '-' else r in Format.fprintf fmt "@[<hov 2>%s: %c%c%c%c" name (acs 'I' m.cinits) (acs 'R' m.creads) (acs 'W' m.cwrites) (acs 'A' m.cshifts) ; List.iter (Format.fprintf fmt "@ (%a)" Typ.pretty) (ctypes m) ; Lset.iter (Format.fprintf fmt "@ %s:") m.clabels ; Vset.iter (Format.fprintf fmt "@ %a" Varinfo.pretty) m.ccvars ; if Options.debug_atleast 1 then begin Access.Set.iter (Format.fprintf fmt "@ I:%a" Access.pretty) m.cinits ; Access.Set.iter (Format.fprintf fmt "@ R:%a" Access.pretty) m.creads ; Access.Set.iter (Format.fprintf fmt "@ W:%a" Access.pretty) m.cwrites ; Access.Set.iter (Format.fprintf fmt "@ A:%a" Access.pretty) m.cshifts ; end ; List.iter (Format.fprintf fmt "@ P:%a" pp_node) m.cparents ; Format.fprintf fmt "@ %a ;@]" pp_layout m.clayout ; end let pp_region fmt (r : node) = let name = Pretty_utils.to_string pp_node r in pp_chunk name fmt (UF.get r) [@@ warning "-32"] (* -------------------------------------------------------------------------- *) (* --- Nodes Set --- *) (* -------------------------------------------------------------------------- *) let id n = (UF.get n).cid let of_id m = UF.of_id m.store module SNode = Set.Make(struct type t = node let compare r1 r2 = Int.compare (id r1) (id r2) end) (* -------------------------------------------------------------------------- *) (* --- Chunk Constructors --- *) (* -------------------------------------------------------------------------- *) let new_chunk (store : UF.store) ?parent ?(size=0) ?ptr ?pointed () = let clayout = match ptr with | None -> if size = 0 then Blob else Cell(size,None) | Some _ -> Cell(Ranges.gcd size (bitsSizeOf Cil_const.voidPtrType), ptr) in let cparents = match parent with None -> [] | Some root -> [root] in let cpointed = match pointed with None -> [] | Some ptr -> [ptr] in UF.fresh store { empty with clayout ; cpointed ; cparents } let fresh (m: map) = new_chunk m.store () let add_label (m: map) a = try Lmap.find a m.labels with Not_found -> let n = new_chunk m.store () in update n (fun d -> { d with clabels = Lset.singleton a }) ; m.labels <- Lmap.add a n m.labels ; n let add_cvar (m: map) v = try Vmap.find v m.cvars with Not_found -> let n = new_chunk m.store () in update n (fun d -> { d with ccvars = Vset.singleton v }) ; m.cvars <- Vmap.add v n m.cvars ; n let add_logic_info (m: map) f = try LVImap.find f m.logics with Not_found -> let get_type t = Ldomain.of_ltype (new_chunk m.store) t in let d = Option.fold ~none:Ldomain.pure ~some:get_type f.l_type in m.logics <- LVImap.add f d m.logics ; d let add_logic_var (m: map) lv = try LVmap.find lv m.lvars with Not_found -> assert (lv.lv_origin = None); let d = Ldomain.of_ltype (new_chunk m.store) lv.lv_type in m.lvars <- LVmap.add lv d m.lvars ; d let add_result (m: map) = let result = match m.result with | None -> new_chunk m.store () | Some r -> r in m.result <- Some result ; result let domain_of_typ (m:map) (typ:typ) = Ldomain.of_typ (new_chunk m.store) typ let domain_of_ltyp (m:map) ?(ctxt) (lt:logic_type) = let d : domain = Ldomain.of_ltype (new_chunk m.store) lt in Option.fold ~none:d ~some:(fun (c:context) -> Ldomain.subst c d) ctxt (* -------------------------------------------------------------------------- *) (* --- Iterator --- *) (* -------------------------------------------------------------------------- *) let rec walk (f: node -> bool) n = if not (f n) then match (UF.get n).clayout with | Blob -> () | Cell(_,p) -> Option.iter (walk f) p | Compound(_,_,rg) -> Ranges.iter (walk f) rg let witer (m:map) (f: node -> bool) = Vmap.iter (fun _x n -> walk f n) m.cvars ; LVmap.iter (fun _ -> Ldomain.iter (walk f)) m.lvars ; LVImap.iter (fun _ -> Ldomain.iter (walk f)) m.logics ; Option.iter (walk f) m.result let once (f : node -> unit) : node -> bool = let h = ref Z.zero in fun n -> let uid = (UF.get n).cid in Z.testbit !h uid || begin h := Z.( !h lor (one lsl uid) ) ; f n ; false end let iter m f = witer m (once f) let size (r: node) = sizeof (UF.get r).clayout let parents (r: node) = UF.find_all (UF.get r).cparents let cvars (r: node) = Vset.elements (UF.get r).ccvars let labels (r: node) = Lset.elements (UF.get r).clabels (* -------------------------------------------------------------------------- *) (* --- Merge --- *) (* -------------------------------------------------------------------------- *) type queue = (node * node) Queue.t type cell = { mutable size : int ; mutable ptr : node option } let new_cell ?(size=0) ?ptr () = { size ; ptr } let cell_layout { size ; ptr } = if size = 0 && ptr = None then Blob else Cell(size,ptr) let merge_push (q: queue) (a: node) (b: node) : unit = if not @@ equal a b then Queue.push (a,b) q let merge_node (q: queue) (a: node) (b: node) : node = merge_push q a b ; UF.any a b let merge_opt (q: queue) (pa : node option) (pb : node option) : node option = match pa, pb with | None, p | p, None -> p | Some pa, Some pb -> Some (merge_node q pa pb) let merge_cell (q:queue) cell root r = let node = UF.get r in let s = sizeof node.clayout in let p = cpointed node.clayout in begin merge_push q root r ; cell.size <- Ranges.gcd cell.size s ; cell.ptr <- merge_opt q cell.ptr p ; end let merge_range s (q: queue) (ra : rg) (rb : rg) : node = let na = ra.data in let nb = rb.data in let r = merge_node q na nb in let ma = ra.offset + ra.length in let mb = rb.offset + rb.length in let dp = ra.offset - rb.offset in let dq = ma - mb in if dp = 0 && dq = 0 then r else let sa = sizeof (UF.get na).clayout in let sb = sizeof (UF.get nb).clayout in let size = Ranges.(sa %. sb %. dp %. dq) in if (sa = 0 || sa = size) && (sb = 0 || sb = size) then r (* merged size is compatible with dp and dq *) else merge_node q r (new_chunk s ~size ()) let merge_ranges s (q: queue) (root: node) (sa : int) (fa : Fields.domain) (wa : node Ranges.t) (sb : int) (fb : Fields.domain) (wb : node Ranges.t) : layout = if sa = sb then match Ranges.merge (merge_range s q) wa wb with | R [{ offset = 0 ; length ; data }] when length = sa -> merge_push q root data ; (UF.get data).clayout | ranges -> let fields = Fields.union fa fb in Compound(sa, fields, ranges) else let size = Ranges.gcd sa sb in let cell = new_cell ~size () in Ranges.iter (merge_cell q cell root) wa ; Ranges.iter (merge_cell q cell root) wb ; cell_layout cell let merge_layout s (q:queue) (root:node) (a:layout) (b:layout) : layout = match a, b with | Blob, c | c, Blob -> c | Cell(sa,pa) , Cell(sb,pb) -> Cell(Ranges.gcd sa sb, merge_opt q pa pb) | Compound(sa,fa,wa), Compound(sb,fb,wb) -> merge_ranges s q root sa fa wa sb fb wb | Compound(sr,_,wr), Cell(sx,ptr) | Cell(sx,ptr), Compound(sr,_,wr) -> let size = Ranges.gcd sx sr in let cell = new_cell ~size ?ptr () in Ranges.iter (merge_cell q cell root) wr ; cell_layout cell let merge_chunk s (q:queue) (root:node) (a : chunk) (b : chunk) : chunk = { cparents = UF.find_all2 a.cparents b.cparents ; cpointed = UF.find_all2 a.cpointed b.cpointed ; clabels = Lset.union a.clabels b.clabels ; ccvars = Vset.union a.ccvars b.ccvars ; creads = Access.Set.union a.creads b.creads ; cwrites = Access.Set.union a.cwrites b.cwrites ; cshifts = Access.Set.union a.cshifts b.cshifts ; cinits = Access.Set.union a.cinits b.cinits ; clayout = merge_layout s q root a.clayout b.clayout ; cid = UF.noid ; } let do_merge (q: queue) (a: node) (b: node): unit = begin let store = UF.store a in let ca = UF.get a in let cb = UF.get b in let rt = UF.merge (fun w _ -> w) a b in let ck = merge_chunk store q rt ca cb in let cparents = List.filter (fun r -> not @@ equal r rt) ck.cparents in let ck = { ck with cparents } in UF.set rt ck ; end let merge_all = function | [] -> () | r::rs -> let q = Queue.create () in List.iter (fun r' -> ignore @@ merge_node q r r') rs ; while not @@ Queue.is_empty q do let a,b = Queue.pop q in do_merge q a b ; done let merge (a: node) (b: node) : unit = merge_all [a;b] let merge_domain = Ldomain.merge (fun a b -> merge a b ; min a b) (* -------------------------------------------------------------------------- *) (* --- Offset --- *) (* -------------------------------------------------------------------------- *) let add_field (r:node) (fd:fieldinfo) : node = let ci = fd.fcomp in if not ci.cstruct then r else let store = UF.store r in let size = bitsSizeOf (Cil_const.mk_tcomp ci) in let offset, length = Cil.fieldBitsOffset fd in if offset = 0 && size = length then r else let data = new_chunk store ~parent:r () in let ranges = Ranges.singleton { offset ; length ; data } in let fields = Fields.singleton fd in let clayout = Compound(size,fields,ranges) in let nc = UF.fresh store { empty with clayout } in merge r nc ; data let add_index (r:node) (ty:typ) : node = let size = bitsSizeOf ty in let re = new_chunk (UF.store r) ~size () in merge r re ; re let add_points_to (a: node) (b : node) = begin let store = UF.store a in merge a @@ new_chunk store ~ptr:b () ; merge b @@ new_chunk store ~pointed:a () ; end let add_value (rv:node) (ty:typ) : node option = if Ast_types.is_ptr ty then begin let m = UF.store rv in let rp = new_chunk m ~pointed:rv () in merge rv @@ new_chunk m ~ptr:rp () ; Some rp end else None (* -------------------------------------------------------------------------- *) (* --- Access --- *) (* -------------------------------------------------------------------------- *) let sized (a:node) (ty: typ) = if Ast_types.is_scalar ty then let sr = sizeof (UF.get a).clayout in let size = Ranges.gcd sr (bitsSizeOf ty) in if sr <> size then ignore (merge a (new_chunk (UF.store a) ~size ())) let add_read (a: node) acs = let r = UF.get a in UF.set a { r with creads = Access.Set.add acs r.creads } ; sized a @@ Access.typeof acs let add_write (a: node) acs = update a (fun r -> { r with cwrites = Access.Set.add acs r.cwrites }) ; sized a @@ Access.typeof acs let add_shift (a: node) acs = update a (fun r -> { r with cshifts = Access.Set.add acs r.cshifts }) ; sized a @@ Access.typeof acs let add_init (a: node) acs = update a (fun r -> { r with cinits = Access.Set.add acs r.cinits }); sized a @@ Access.typeof acs (* -------------------------------------------------------------------------- *) (* --- Lookup ---- *) (* -------------------------------------------------------------------------- *) let points_to (r : node) : node option = match (UF.get r).clayout with | Blob | Compound _ | Cell(_,None) -> None | Cell(_,Some r) -> Some (UF.find r) let pointed_by (r : node) = UF.find_all (UF.get r).cpointed let cvar (m: map) (v: varinfo) : node = UF.find @@ Vmap.find v m.cvars let lvar (m: map) (v: logic_var) = LVmap.find v m.lvars let logic_info (m: map) (l: logic_info) = LVImap.find l m.logics let rec move (r: node) (p: int) (s: int) = match (UF.get r).clayout with | Blob | Cell _ -> r | Compound(s0,_,rgs) -> if s0 <= s then r else let rg = Ranges.find p rgs in move rg.data (p - rg.offset) s let field (r: node) (fd: fieldinfo) : node = if fd.fcomp.cstruct then let s = bitsSizeOf fd.ftype in let (p,_) = Cil.fieldBitsOffset fd in move r p s else r let footprint (r: node) : node list = try let visited = ref SNode.empty (* set of visited & normalized nodes *) in let leaves = ref [] (* returned leaves *) in let rec visit (r: node) : unit = let n = find r in (* normalized node *) if SNode.mem n !visited then () else visited := SNode.add n !visited ; match (UF.get n).clayout with | Compound (_, _, range) -> Ranges.iter visit range | Blob | Cell (_,_) -> leaves := n :: !leaves in visit r ; !leaves with Not_found -> [] let index (r: node) (ty:typ) : node = move r 0 (bitsSizeOf ty) let rec lval (m: map) (h,ofs) : node = offset (lhost m h) (Cil.typeOfLhost h) ofs and lhost (m: map) (h: lhost) : node = match h with | Var x -> cvar m x | Mem e -> match exp m e with | Some r -> r | None -> raise Not_found and offset (r: node) (ty: typ) (ofs: offset) : node = match ofs with | NoOffset -> UF.find r | Field (fd, ofs) -> offset (field r fd) fd.ftype ofs | Index (_, ofs) -> let te = Ast_types.direct_element_type ty in offset (index r te) te ofs and exp (m: map) (e: exp) : node option = match e.enode with | Const _ | SizeOf _ | SizeOfE _ | AlignOf _ | AlignOfE _ -> None | Lval lv -> points_to @@ lval m lv | AddrOf lv | StartOf lv -> Some (lval m lv) | CastE(_, e) -> exp m e | BinOp((PlusPI|MinusPI),p,_,_) -> exp m p | UnOp (_, _, _) | BinOp (_, _, _, _) -> None let result (m: map) = m.result (* -------------------------------------------------------------------------- *) let included source target : bool = let exception Reached in try let q = Queue.create () in (* only marked nodes *) let push r = let r = UF.find r in if equal target r then raise Reached else Queue.push r q in push source ; let visited = Hashtbl.create 0 in while true do let node = Queue.pop q in if equal target node then raise Exit else let id = id node in if not @@ Hashtbl.mem visited id then begin Hashtbl.add visited id () ; List.iter push (parents node) ; end done ; assert false with | Queue.Empty -> false | Reached -> true let separated r1 r2 = not (included r1 r2) && not (included r2 r1) let single_path r0 r s = match (UF.get r0).clayout with | Blob -> true | Cell(s0,_) -> s = s0 | Compound(_,_,R rgs) -> List.for_all (fun (rg : node Ranges.range) -> not (equal r rg.data) || rg.length = s ) rgs let rec singleton r = let node = UF.get r in (* normalized parents *) match UF.find_all node.cparents with | [] -> Vset.cardinal node.ccvars = 1 | [r0] -> Vset.is_empty node.ccvars && single_path r0 r (sizeof node.clayout) && (* r != r0 && (* This test may be useful to prevent infinity loops. *) *) singleton r0 | _ -> false (* -------------------------------------------------------------------------- *) let reads (r:node) = let node = UF.get r in List.map Access.typeof @@ Access.Set.elements node.creads let writes (r:node) = let node = UF.get r in List.map Access.typeof @@ Access.Set.elements node.cwrites let shifts (r:node) = let node = UF.get r in List.map Access.typeof @@ Access.Set.elements node.cshifts let inits (r:node) = let node = UF.get r in List.map Access.typeof @@ Access.Set.elements node.cinits let types (r:node) = ctypes @@ UF.get r let typed (r:node) = let types = ref None in let node = UF.get r in let size = sizeof node.clayout in try let check acs = let t = Access.typeof acs in match Ast_types.unroll_skel t with | TVoid | TFun _ -> () | _ -> if bitsSizeOf t > size then raise Exit ; match !types with | None -> types := Some t | Some t0 -> if not @@ Cil_datatype.Typ.equal t0 t then raise Exit in Access.Set.iter check node.creads ; Access.Set.iter check node.cwrites ; !types with Exit -> None (* -------------------------------------------------------------------------- *) (* --- High-Level API --- *) (* -------------------------------------------------------------------------- *) type root = Root of { label: string ; (* pretty printed root *) cvar : varinfo ; cells : int ; } type range = Range of { label: string ; (* pretty printed fields *) offset: int ; length: int ; cells: int ; data: node ; } type region = { node: node ; parents: node list ; cvars: root list ; labels: string list ; types: typ list ; typed : typ option ; fields: Fields.domain ; reads: Access.acs list ; writes: Access.acs list ; inits: Access.acs list ; shifts: Access.acs list ; sizeof: int ; singleton : bool ; ranges: range list ; pointed: node option ; } (* -------------------------------------------------------------------------- *) (* --- Pretty Printers --- *) (* -------------------------------------------------------------------------- *) let pp_cells fmt = function | 1 -> () | 0 -> Format.fprintf fmt "[%t]" Unicode.pp_ellipsis | n -> Format.fprintf fmt "[%d]" n type slice = | Padding of int | Slice of range let pad p q s = let n = q - p in if n > 0 then Padding n :: s else s let rec span k s = function | [] -> pad k s [] | (Range rg as r)::rs -> pad k rg.offset @@ Slice r :: span (rg.offset + rg.length) s rs let pp_slice fields fmt = function | Padding n -> Format.fprintf fmt "@ %a;" Fields.pp_bits n | Slice (Range r) -> Format.fprintf fmt "@ %t: %a%a;" (Fields.pslice ~fields ~offset:r.offset ~length:r.length) pp_node r.data pp_cells r.cells let pp_range fmt (Range r) = Format.fprintf fmt "@ %d..%d: %a%a;" r.offset (r.offset + r.length) pp_node r.data pp_cells r.cells let pp_root fmt (Root r) = Format.fprintf fmt "%a%a" Varinfo.pretty r.cvar pp_cells r.cells let pp_region fmt (m: region) = begin let acs r s = if s = [] then '-' else r in Format.fprintf fmt "@[<hov 2>%a: %c%c%c%c" pp_node m.node (acs 'I' m.inits) (acs 'R' m.reads) (acs 'W' m.writes) (acs 'A' m.shifts) ; List.iter (Format.fprintf fmt "@ %s:") m.labels ; List.iter (Format.fprintf fmt "@ %a" pp_root) m.cvars ; List.iter (Format.fprintf fmt "@ (%a)" Typ.pretty) m.types ; Format.fprintf fmt "@ %db" m.sizeof ; Option.iter (Format.fprintf fmt "@ (*%a)" pp_node) m.pointed ; if m.ranges <> [] then begin Format.fprintf fmt "@ @[<hv 0>@[<hv 2>{" ; if Options.debug_atleast 1 then List.iter (pp_range fmt) m.ranges else List.iter (pp_slice m.fields fmt) (span 0 m.sizeof m.ranges) ; Format.fprintf fmt "@]@ }@]" ; end ; if Options.debug_atleast 1 then begin List.iter (Format.fprintf fmt "@ R:%a" Access.pretty) m.reads ; List.iter (Format.fprintf fmt "@ W:%a" Access.pretty) m.writes ; List.iter (Format.fprintf fmt "@ A:%a" Access.pretty) m.shifts ; end ; Format.fprintf fmt " ;@]" ; end let pp_node fmt n = pp_node fmt n (* -------------------------------------------------------------------------- *) (* --- Consolidated Accessors --- *) (* -------------------------------------------------------------------------- *) let make_root s (v : Cil_types.varinfo) : root = let cells = if s = 0 then 0 else bitsSizeOf v.vtype / s in let label = Format.asprintf "%a%a" Varinfo.pretty v pp_cells cells in Root { cvar = v ; cells ; label } let make_range fields Ranges.{ length ; offset ; data } : range = let s = sizeof (UF.get data).clayout in let cells = if s = 0 then 0 else length / s in let label = Format.asprintf "%t%a" (Fields.pslice ~fields ~offset ~length) pp_cells cells in Range { offset ; length ; cells ; label ; data = UF.find data } let ranges (r:node) = let node = UF.get r in let fields = cfields node.clayout in List.map (make_range fields) (cranges node.clayout) let make_region (n: node) (r: chunk) : region = let types = ctypes r in let typed = typed n in let sizeof = sizeof r.clayout in let fields = cfields r.clayout in let singleton = singleton n in { node = n ; parents = UF.find_all r.cparents ; cvars = List.map (make_root sizeof) @@ Vset.elements r.ccvars ; labels = Lset.elements r.clabels ; reads = Access.Set.elements r.creads ; writes = Access.Set.elements r.cwrites ; shifts = Access.Set.elements r.cshifts ; inits = Access.Set.elements r.cinits ; ranges = List.map (make_range fields) (cranges r.clayout) ; pointed = Option.map UF.find (cpointed r.clayout) ; types ; typed ; singleton ; sizeof ; fields ; } let region n = make_region n (UF.get n) let regions map = let pool = ref [] in iter map (fun r -> pool := region r :: !pool) ; List.rev !pool let lock m = witer m UF.lock (* -------------------------------------------------------------------------- *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>