Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
    Page
Library
Module
Module type
Parameter
Class
Class type
Source
Modular.ml1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202(* Note: We must take care of avoiding overflows in the underlying integer * operations. For instance, the modular multiplication is not as simple as * [(a * b) mod m] (it is when [m]² < [max_int]). * https://www.quora.com/How-can-I-execute-A-*-B-mod-C-without-overflow-if-A-and-B-are-lesser-than-C/answer/Dana-Jacobsen * https://en.wikipedia.org/wiki/Modular_arithmetic#Example_implementations *) let sqrt_max_int = 1 lsl ((Sys.int_size - 1) / 2) (* User-facing functions perform domain checks before calling internal * functions. Internal functions are prefixed with an underscore. *) let _add ~modulo:m a b = let m_b = m - b in if a < m_b then a + b else a - m_b let[@inline] add ~modulo:m a b = assert (0 <= a && a < m) ; assert (0 <= b && b < m) ; _add ~modulo:m a b let _opp ~modulo:m a = if a = 0 then 0 else m - a let[@inline] opp ~modulo:m a = assert (0 <= a && a < m) ; _opp ~modulo:m a let _sub ~modulo:m a b = if a >= b then a - b else a + (m - b) let[@inline] sub ~modulo:m a b = assert (0 <= a && a < m) ; assert (0 <= b && b < m) ; _sub ~modulo:m a b let[@inline] _mul ~modulo:m a b = Arith._modular_mul ~modulo:m a b let[@inline] mul ~modulo:m a b = assert (0 <= a && a < m) ; assert (0 <= b && b < m) ; _mul ~modulo:m a b (* We compute the modular inverse using an extended Euclidean algorithm. * [_modular_gcdext ~modulo:m b] returns a pair [(d, v)] where [1 ≤ d ≤ m] is * the GCD of [m] and [b], and [0 ≤ v < m] is such that [d = v·b (mod m)]. * When [b = 0], it returns [d = m]. Such a [v] is defined modulo [m/d]. *) let[@inline] _gcdext ~modulo:m b = Arith._modular_gcdext ~modulo:m b let _inv ~modulo:m b = let (d, v) = _gcdext ~modulo:m b in if d = 1 then v else raise Division_by_zero let[@inline] inv ~modulo:m b = assert (0 <= b && b < m) ; _inv ~modulo:m b let _div ~modulo:m a b = _mul ~modulo:m a (_inv ~modulo:m b) let[@inline] div ~modulo:m a b = assert (0 <= a && a < m) ; assert (0 <= b && b < m) ; _div ~modulo:m a b let _div_nonunique ~modulo:m a b = let (d, v) = _gcdext ~modulo:m b in let (a', r) = Arith.sdiv a d in if r = 0 then _mul ~modulo:m a' v else raise Division_by_zero let[@inline] div_nonunique ~modulo:m a b = assert (0 <= a && a < m) ; assert (0 <= b && b < m) ; _div_nonunique ~modulo:m a b exception Factor_found of int (* let inv_factorize ~modulo:m b = begin try inv ~modulo:m b with Division_by_zero when b <> 0 -> let d = Arith.gcd m b in raise (Factor_found d) end *) let _inv_factorize ~modulo:m b = let (d, v) = _gcdext ~modulo:m b in if d = 1 then v else if d = m then raise Division_by_zero else raise (Factor_found d) let[@inline] inv_factorize ~modulo:m b = assert (0 <= b && b < m) ; _inv_factorize ~modulo:m b let _pow ~modulo:m = (* For [m] = 1, [Common.pow] would not produce canonical values: *) if m = 1 then fun _a _n -> 0 else fun a n -> if 0 <= n then Common.pow ~mult:(_mul ~modulo:m) ~unit:1 a n else Common.pow ~mult:(_mul ~modulo:m) ~unit:1 (_inv ~modulo:m a) ~-n let[@inline] pow ~modulo:m a n = assert (0 <= a && a < m) ; assert (n <> Stdlib.min_int) ; _pow ~modulo:m a n let _rand ~modulo:m () = Arith.rand ~max:(m-1) () let[@inline] rand ~modulo:m () = assert (0 < m) ; _rand ~modulo:m () (******************************************************************************) module Make (M : sig val modulo : int end) = struct let () = assert (M.modulo <> 0) ; assert (M.modulo <> Stdlib.min_int) let modulo = abs M.modulo type t = int let of_int a = Arith.erem a modulo let ( !: ) = of_int let to_int a = a let opp = _opp ~modulo let ( ~-: ) = opp let inv = _inv ~modulo let ( ~/: ) = inv let ( +: ) = _add ~modulo let ( -: ) = _sub ~modulo let ( *: ) = _mul ~modulo let ( /: ) = _div ~modulo let ( //: ) = _div_nonunique ~modulo let inv_factorize = _inv_factorize ~modulo let pow = _pow ~modulo let ( **: ) = pow let rand = _rand ~modulo let ( ~-:. ) a = ~-: !:a let ( ~/:. ) a = ~/: !:a let ( +:. ) a b = a +: !:b let ( +.: ) a b = !:a +: b let ( +.. ) a b = !:a +: !:b let ( -:. ) a b = a -: !:b let ( -.: ) a b = !:a -: b let ( -.. ) a b = !:a -: !:b let ( *.: ) a b = !:a *: b let ( *:. ) a b = a *: !:b let ( *.. ) a b = !:a *: !:b let ( /.: ) a b = !:a /: b let ( /:. ) a b = a /: !:b let ( /.. ) a b = !:a /: !:b let ( //.: ) a b = !:a //: b let ( //:. ) a b = a //: !:b let ( //.. ) a b = !:a //: !:b let ( **.: ) a b = !:a **: b end (* tests *) (* FIXME: Use an actual tool for unit tests. *) let () = assert (mul ~modulo:max_int (max_int - 7) 2 = (max_int - 14)) ; assert (inv ~modulo:max_int (max_int-1) = (max_int-1)) ; assert (mul ~modulo:(max_int - 1) (max_int - 3) (max_int - 7) = 12) ; assert (inv ~modulo:42 37 = 25) ; ()