package encore
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file lavoisier.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275type state = Partial of partial | Done | Fail and partial = { buffer : string; off : int; len : int; continue : committed:int -> state; } type encoder = { dequeue : Deke.t; stack : int Stack.t } let flush k0 encoder = if Stack.length encoder.stack > 0 || Deke.is_empty encoder.dequeue then k0 encoder (* TODO(dinosaure): or * [ not (Deke.is_empty encoder.dequeue * && Stack.length encoder.stack = 0] *) else if not (Deke.is_empty encoder.dequeue) then let str = ref (Deke.pop encoder.dequeue) in let rec k1 n = if n < String.length !str then Partial { buffer = !str; off = n; len = String.length !str - n; continue = (fun ~committed:m -> (k1 [@tailcall]) (n + m)); } else match Deke.pop encoder.dequeue with | str' -> str := str' ; (k1 [@tailcaill]) 0 | exception Deke.Empty -> k0 encoder in k1 0 else k0 encoder (* XXX(dinosaure): pre-allocate small strings. *) let ( <.> ) f g x = f (g x) let _chr = Array.init 256 (String.make 1 <.> Char.unsafe_chr) let write_char chr k encoder = Deke.push encoder.dequeue _chr.(Char.code chr) ; k encoder let write_string str k encoder = Deke.push encoder.dequeue str ; k encoder type -'a t = { run : (encoder -> state) -> encoder -> 'a -> state; pure : bool } let finish encoder = flush (fun _ -> Done) encoder let error encoder = flush (fun _ -> Fail) encoder let emit value d = let encoder = { dequeue = Deke.create (); stack = Stack.create () } in d.run finish encoder value let emit_string ?(chunk = 0x1000) value d = let buf = Buffer.create chunk in let rec go = function | Partial { buffer = str; off; len; continue } -> Buffer.add_substring buf str off len ; (go [@tailcall]) (continue ~committed:len) | Done -> Buffer.contents buf | Fail -> invalid_arg "emit_string" in go (emit value d) let char = { run = (fun k e v -> write_char v k e); pure = false } let string str = { run = (fun k e v -> if v <> str then error e else write_string v k e); pure = String.length str = 0; } let pure ~compare v = { run = (fun k e v' -> if compare v v' then k e else error e); pure = true } (* XXX(dinosaure): [choose p q = choose q p], even if we execute [q] before [p], the result output must be the same ([choose] is associative). By this fact, we can take the opportunity to optimize the encoding. With: {[ let rep1 p = fix @@ fun m -> Bij.cons <$> (p <*> (m <|> nil)) ]} [m <|> nil] can be replaced by [nil <|> m]. Then, [nil] is a pure element which does not write anything into the output. So we can compute it safely and if it fails, we simply run [q]. This optimization helps us to avoid a large stack until we reach [nil]. *) let rec rem dequeue weight = if Deke.weight dequeue > weight then match Deke.rem dequeue with | _str -> let remaining = Deke.weight dequeue - weight in if remaining > 0 then (rem [@tailcaill]) dequeue weight else if remaining < 0 then assert false | exception Deke.Empty -> () let _done _ = Done let commit p ~committed:_ = p (* XXX(dinosaure): this part wants to optimize and avoid many calls (and grow the stack) * for large objects. Indeed, [map] should protect us against a [Bij.Bijection] exception. * However, such surrounding protection generate a cascade of [map] when for each element * of a larger object, we apply a function. * * We know that [Bij.Bijection] is really necesary to catch only for the choose operation. * Indeed, this is the only place where we need to /undo/ what we did & and relaunch the * generation. [unroll] assumes that [p] is pure, it should not write anything - but a flush * can exist inside. Such assertion allows us to catch [Bij.Bijection] at the pattern level. * * With such design, we allow OCaml to optimize the whole process in the CPS style without * any free-variables - so [k], [e] or [v] can be wrong but we don't care because, if [p] * is pure, these values should not be usable/updated finally. * * The worst case is when [p] and [q] are not pure. In that case, [Partial] can not be done * but the buffer size output should be enough larger to keep the result of [p] or [q]. Again, * in that case, we take the opportunity to catch the exception at the pattern-level (and * avoid the cascade of surrounded piece of code with [try ... with ...]) to continue on * the CPS style. * * /!\ this code asserts several things, and it try to fit into Irmin and be able to * serialize **large** tree objects. If you want to update it, be really aware! *) let rec unroll ~committed p q k e v = match (p ~committed).run _done e v with | Done -> k e | Fail -> q.run k e v | Partial { buffer; off; len; continue } -> let p ~committed = { run = (fun _k _e _v -> continue ~committed); pure = false } in Partial { buffer; off; len; continue = unroll p q k e v } | exception Bij.Bijection -> q.run k e v let _pop_and_done e = let _ = Stack.pop e.stack in Done let unroll_and_undo p q k e v = Stack.push (Deke.weight e.dequeue) e.stack ; (* XXX(dinosaure): save. *) match p.run _pop_and_done e v with | Partial _ -> assert false | Done -> k e | Fail -> rem e.dequeue (Stack.pop e.stack) ; (* XXX(dinosaure): undo. *) q.run k e v | exception Bij.Bijection -> rem e.dequeue (Stack.pop e.stack) ; (* XXX(dinosaure): undo. *) q.run k e v let choose p q = if p.pure then { run = unroll ~committed:0 (commit p) q; pure = q.pure } else if q.pure then { run = unroll ~committed:0 (commit q) p; pure = p.pure } else { run = unroll_and_undo p q; pure = false } let string_for_all f x = let rec go a i = if i < String.length x then (go [@tailcall]) (f x.[i] && a) (succ i) else a in go true 0 let string_for_all_while n f x = let rec go a i = if i < String.length x && i < n then (go [@tailcall]) (f x.[i] && a) (succ i) else a && i >= n in go true 0 let put_while1 p = { run = (fun k e v -> if String.length v > 0 && string_for_all p v then write_string v k e else error e); pure = false; } let put_while0 p = { run = (fun k e v -> if string_for_all p v then write_string v k e else error e); pure = false; } let put p n = { run = (fun k e v -> if string_for_all p v && String.length v = n then write_string v k e else error e); pure = false; } let at_least_put p n = { run = (fun k e v -> if string_for_all_while n p v then write_string v k e else error e); pure = false; } let range ~a ~b p = { run = (fun k e v -> let max = String.length v in let x = string_for_all_while a p v in let y = ref a in while !y < max && p v.[!y] do incr y done ; if x && !y <= b then write_string v k e else error e); pure = false; } let product a b = { run = (fun k e (u, v) -> let k e = b.run k e v in a.run k e u); pure = a.pure && b.pure; } let fail _err = { run = (fun _ e _ -> error e); pure = true } let fix f = let rec d = lazy (f r) and r = { run = (fun k e v -> Lazy.(force d).run k e v); pure = false } in r let ( *> ) p r = { run = (fun k e v -> p.run (fun e -> r.run k e v) e ()); pure = p.pure && r.pure; } let ( <* ) p r = { run = (fun k e v -> p.run (fun e -> r.run k e ()) e v); pure = p.pure && r.pure; } let map x f = { run = (fun k e v -> x.run k e (f v)); pure = x.pure } let commit = { run = (fun k e () -> flush k e); pure = true } let peek a b = { run = (fun k e -> function | Either.L x -> a.run k e x | Either.R y -> b.run k e y); pure = a.pure && b.pure; }