package emile

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Emile module, parser of e-mail address.

type raw =
  1. | Quoted_printable of string
  2. | Base64 of [ `Dirty of string | `Clean of string | `Wrong_padding ]

An e-mail address can contain as a part of a phrase (identifier) an encoded string. Standards describe 2 kinds of encoding:

  • Quoted Printable: used to insert hexadecimal value with the = operator.
  • Base 64: string encoded in MIME's Base64

Parser already decodes encoded raw, the client can use it as is.

type word = [
  1. | `Atom of string
  2. | `String of string
]

The local part of an e-mail address is composed by two kinds of words:

  • `Atom is string as is.
  • `String is a string surrounded by double-quote to allow white-space.

The second kind is sanitize - we deleted double-quote.

type local = word list

Local part of e-mail address.

type addr =
  1. | IPv4 of Ipaddr.V4.t
  2. | IPv6 of Ipaddr.V6.t
  3. | Ext of string * string

Subset of domain described by RFC5321 which contains 3 kinds of address:

  • IPv4: a valid IPv4 address
  • IPv6: a valid IPv6 address
  • Ext (ldh, value): an extended kind of domain recognized by ldh identifier which valus is value

Parser of IPv4 and IPv6 was done by Ipaddr. An extended kind Ext need to be resolved by the client.

type domain = [
  1. | `Domain of string list
  2. | `Addr of addr
  3. | `Literal of string
]

Domain part of e-mail address. A domain integrate kinds from RFC5321 (see addr), a domain described by RFC5322 and a `Literal which is the last best-effort value possible as a domain.

Emile does not resolve domain.

type phrase = [ `Dot | `Word of word | `Encoded of string * raw ] list

A phrase is a sentence to associate a name with an e-mail address or a group of e-mail addresses. `Encoded value is not normalized on the charset specified. The encoded's string is decoded as is only.

type mailbox = {
  1. name : phrase option;
  2. local : local;
  3. domain : domain * domain list;
}

A mailbox is an e-mail address. It contains an optional name (see phrase), a local-part see {!local

}

and one or more domain(s).

type group = {
  1. group : phrase;
  2. mailboxes : mailbox list;
}

A groyp is a named set of mailbox.

type address = local * (domain * domain list)

A basic e-mail address.

type set = [
  1. | `Mailbox of mailbox
  2. | `Group of group
]

The Emile's set type which is a singleton or a set of e-mail addresses.

Pretty-printer

val pp_addr : addr Fmt.t
val pp_domain : domain Fmt.t
val pp_word : word Fmt.t
val pp_local : local Fmt.t
val pp_raw : raw Fmt.t
val pp_phrase : phrase Fmt.t
val pp_mailbox : mailbox Fmt.t
val pp_group : group Fmt.t
val pp_address : address Fmt.t
val pp_set : set Fmt.t

Equal & Compare

type 'a equal = 'a -> 'a -> bool
type 'a compare = 'a -> 'a -> int
val case_sensitive : string -> string -> int

Alias of String.compare.

val case_insensitive : string -> string -> int

case_insensitive a b maps values with lowercase_ascii and compare them with String.compare. We do not map UTF8 value.

val equal_word : compare:(string -> string -> int) -> word equal

equal ~compare a b tests if word a and word b are semantically equal. compare specifies implementation to compare two string (i.e. to be case-sensitive or not).

val compare_word : ?case_sensitive:bool -> word compare

compare_word ?case_sensitive a b compares word a and word b semantically. From standards, word SHOULD be case-sensitive, the client can notice this behaviour by ?case_sensitive (default is true).

val equal_raw : compare:string compare -> raw equal

equal_raw a b tests if raw a and raw b are semantically equal. Semantically equal means we compare raw's content, by this way, a Base64 raw could be equal to a Quoted_printable raw if and only if string are equal.

val compare_raw : compare:string compare -> raw compare

compare_raw a b compares raw a and raw b semantically.

val equal_phrase : phrase equal

equal_phrase a b tests if phrase a and phrase b are semantically equal. In this case, the comparison is case-insensitive between elements in phrase. The order of elements is important.

val compare_phrase : phrase compare

compare_phrase a b compares phrase a and phrase b semantically.

val equal_addr : addr equal

equal_addr a b tests if addr a and addr b are semantically equal. An IPv4 should be equal with an IPv6 address. Then, for extended kind, we strictly compare (Pervasives.compare) kind and value.

val compare_addr : addr compare

compare_addr a b compares addr a and addr b, we prioritize IPv6, IPv4 and finally Ext.

val equal_domain : domain equal

equal_addr a b tests if domain a and domain b are semantically equal. We do not resolve domain, a `Domain could be semantically equal to another `Domain if they point to the same IPv4/IPv6.

val compare_domain : domain compare

comapre_domain a b compares domain a and domain b, we prioritize `Domain, `Literal and finally `Addr. The comparison between two `Literal and between part of `Domain are case-insensitive.

val equal_domains : (domain * domain list) equal

equal_domains a b apply equal_domain to ordered domains (see compare_domain) between a and b.

val compare_domains : (domain * domain list) compare

compare_domains a b compares ordered list of domain a and ordered list of domain b.

val equal_local : ?case_sensitive:bool -> local equal

equal_local ?case_sensitive a b tests if local a and local b are semantically equal. Standards notices local-part SHOULD be case-sensitive, the client can choose this behaviour with case_sensitive.

val compare_local : ?case_sensitive:bool -> local compare

compare_local ?case_sensitive a b compares local a and local b semantically. The user can decide if the comparison is case-sensitive or not (with case_sensitive).

val equal_mailbox : ?case_sensitive:bool -> mailbox equal

equal_mailbox ?case_sensitive a b tests if mailbox a and mailbox b are semantically equal. The user can define if the local-part need to be case-sensitive or not (by case_sensitive). If a xor b has a name, we consider a = b if we have the same local-part and same domain(s). Otherwise, we compare identifier/phrase between them.

val compare_mailbox : ?case_sensitive:bool -> mailbox compare

compare ?case_sensitive a b compares mailbox a and mailbxo b semantically. We prioritize local-part, domain-part and finally optionnal name.

val compare_group : group compare

comapre_group a b compares group a and group b. We compare the group name first and compare ordered mailboxes list then.

val equal_group : group equal

equal_group a b tests if group a and group b are semantically equal. We compare first group name and ordered mailboxes list then.

val compare_address : address compare
val equal_address : address equal
val equal_set : set equal

equal a b tests semantically t a and t b.

val compare_set : set compare

compare a b compares t a and t b.

val strictly_equal_set : set equal

A structurally equal function on t.

Decoders

type error = [
  1. | `Invalid of string * string list
  2. | `Incomplete
]
val pp_error : error Fmt.t

pp_error ppf err prints an error.

module List : sig ... end
val address_of_string_with_crlf : string -> (address, error) Stdlib.result
val address_of_string : string -> (address, error) Stdlib.result
val address_of_string_raw : string -> int -> int -> (address * int, error) Stdlib.result
val set_of_string_with_crlf : string -> (set, error) Stdlib.result
val set_of_string : string -> (set, error) Stdlib.result
val set_of_string_raw : string -> int -> int -> (set * int, error) Stdlib.result
val of_string_with_crlf : string -> (mailbox, error) Stdlib.result
val of_string : string -> (mailbox, error) Stdlib.result
val of_string_raw : string -> int -> int -> (mailbox * int, error) Stdlib.result
OCaml

Innovation. Community. Security.