package dunolint-lib
A library to create dunolint configs
Install
dune-project
Dependency
Authors
Maintainers
Sources
dunolint-0.0.20251006.tbz
sha256=1b064927c9e1ef5352a1886ae34a206fef0ce6a913c19a77b0162acc108e0e50
sha512=6cbc08ba318bef6584d15a4491e3dde1bf436109ce0f8b7c400a9f91bbcee64c5785bc924df11eafe98243ec2f188a7f92c58c5062729f3e2af1e9977f1a5e67
doc/src/dunolint-lib.vendor_blang/blang.ml.html
Source file blang.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
(* The MIT License Copyright (c) 2008--2024 Jane Street Group, LLC <opensource-contacts@janestreet.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) module List = ListLabels (* The module [T] serves to enforce the invariant that all Blang.t values are in a normal form whereby boolean constants True and False only appear as the topmost constructor -- in any other position they are simplified away using laws of boolean algebra. We also enforce that nested [And]s and [Or]s each lean to the right so that [eval] doesn't need so much stack space as it would if they leaned to the left. Thought experiment: compare how [eval] works on right-leaning [And (a, And (b, And (c, d)))] versus left-leaning [And (And (And (a, b), c), d)]. The former is the best case and is enforced. Note: this file deviates from the usual pattern of modules with Stable interfaces in that the Stable sub-module is not the first thing to be defined in the module. The reason for this deviation is so that one can convince oneself of the aforementioned invariant after reading only this small amount of code. After defining T we then immediately define its Stable interface. *) module T : sig type +'a t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val true_ : 'a t val false_ : 'a t val not_ : 'a t -> 'a t val andalso : 'a t -> 'a t -> 'a t val orelse : 'a t -> 'a t -> 'a t val if_ : 'a t -> 'a t -> 'a t -> 'a t val base : 'a -> 'a t end = struct type +'a t = | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a let rec compare : 'a. ('a -> 'a -> int) -> 'a t -> 'a t -> int = fun _cmp__a -> fun a__001_ -> fun b__002_ -> if Stdlib.( == ) a__001_ b__002_ then 0 else ( match a__001_, b__002_ with | True, True -> 0 | True, _ -> -1 | _, True -> 1 | False, False -> 0 | False, _ -> -1 | _, False -> 1 | And (_a__003_, _a__005_), And (_b__004_, _b__006_) -> (match compare _cmp__a _a__003_ _b__004_ with | 0 -> compare _cmp__a _a__005_ _b__006_ | n -> n) | And _, _ -> -1 | _, And _ -> 1 | Or (_a__011_, _a__013_), Or (_b__012_, _b__014_) -> (match compare _cmp__a _a__011_ _b__012_ with | 0 -> compare _cmp__a _a__013_ _b__014_ | n -> n) | Or _, _ -> -1 | _, Or _ -> 1 | Not _a__019_, Not _b__020_ -> compare _cmp__a _a__019_ _b__020_ | Not _, _ -> -1 | _, Not _ -> 1 | If (_a__023_, _a__025_, _a__027_), If (_b__024_, _b__026_, _b__028_) -> (match compare _cmp__a _a__023_ _b__024_ with | 0 -> (match compare _cmp__a _a__025_ _b__026_ with | 0 -> compare _cmp__a _a__027_ _b__028_ | n -> n) | n -> n) | If _, _ -> -1 | _, If _ -> 1 | Base _a__035_, Base _b__036_ -> _cmp__a _a__035_ _b__036_) ;; let rec equal : 'a. ('a -> 'a -> bool) -> 'a t -> 'a t -> bool = fun _cmp__a -> fun a__037_ -> fun b__038_ -> if Stdlib.( == ) a__037_ b__038_ then true else ( match a__037_, b__038_ with | True, True -> true | True, _ -> false | _, True -> false | False, False -> true | False, _ -> false | _, False -> false | And (_a__039_, _a__041_), And (_b__040_, _b__042_) -> Stdlib.( && ) (equal _cmp__a _a__039_ _b__040_) (equal _cmp__a _a__041_ _b__042_) | And _, _ -> false | _, And _ -> false | Or (_a__047_, _a__049_), Or (_b__048_, _b__050_) -> Stdlib.( && ) (equal _cmp__a _a__047_ _b__048_) (equal _cmp__a _a__049_ _b__050_) | Or _, _ -> false | _, Or _ -> false | Not _a__055_, Not _b__056_ -> equal _cmp__a _a__055_ _b__056_ | Not _, _ -> false | _, Not _ -> false | If (_a__059_, _a__061_, _a__063_), If (_b__060_, _b__062_, _b__064_) -> Stdlib.( && ) (equal _cmp__a _a__059_ _b__060_) (Stdlib.( && ) (equal _cmp__a _a__061_ _b__062_) (equal _cmp__a _a__063_ _b__064_)) | If _, _ -> false | _, If _ -> false | Base _a__071_, Base _b__072_ -> _cmp__a _a__071_ _b__072_) ;; let true_ = True let false_ = False let base v = Base v let not_ = function | True -> False | False -> True | Not t -> t | t -> Not t ;; let rec andalso t1 t2 = match t1, t2 with | _, False | False, _ -> False | other, True | True, other -> other | And (t1a, t1b), _ -> (* nested [And]s lean right -- see comment above *) And (t1a, andalso t1b t2) | _ -> And (t1, t2) ;; let rec orelse t1 t2 = match t1, t2 with | _, True | True, _ -> True | other, False | False, other -> other | Or (t1a, t1b), _ -> (* nested [Or]s lean right -- see comment above *) Or (t1a, orelse t1b t2) | _ -> Or (t1, t2) ;; let if_ a b c = match a with | True -> b | False -> c | _ -> (match b, c with | True, _ -> orelse a c | _, False -> andalso a b | _, True -> orelse (not_ a) b | False, _ -> andalso (not_ a) c | _ -> If (a, b, c)) ;; end include T module Stable = struct module V1 : sig (* THIS TYPE AND ITS SERIALIZATIONS SHOULD NEVER BE CHANGED - PLEASE SPEAK WITH ANOTHER DEVELOPER IF YOU NEED MORE DETAIL *) type 'a t = 'a T.t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool include Sexpable.S1 with type 'a t := 'a t (* the remainder of this signature consists of functions used in the definitions of sexp conversions that are also useful more generally *) val and_ : 'a t list -> 'a t val or_ : 'a t list -> 'a t val gather_conjuncts : 'a t -> 'a t list val gather_disjuncts : 'a t -> 'a t list end = struct type 'a t = 'a T.t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a include ( T : sig type 'a t val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool end with type 'a t := 'a t) type sexp = Sexp.t = | Atom of string | List of sexp list (* cheap import *) (* flatten out nested and's *) let gather_conjuncts t = let rec loop acc = function | True :: ts -> loop acc ts | And (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | t :: ts -> loop (t :: acc) ts | [] -> List.rev acc in loop [] [ t ] ;; (* flatten out nested or's *) let gather_disjuncts t = let rec loop acc = function | False :: ts -> loop acc ts | Or (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | t :: ts -> loop (t :: acc) ts | [] -> List.rev acc in loop [] [ t ] ;; (* [and_] and [or_] use [fold_right] instead of [fold_left] to avoid quadratic behavior with [andalso] or [orelse], respectively. *) let and_ ts = List.fold_right ts ~init:true_ ~f:andalso let or_ ts = List.fold_right ts ~init:false_ ~f:orelse let of_sexp_error str sexp = raise (Sexp.Of_sexp_error (Failure str, sexp)) let unary name args sexp = match args with | [ x ] -> x | _ -> let n = List.length args in of_sexp_error (Printf.sprintf "%s expects one argument, %d found" name n) sexp ;; let ternary name args sexp = match args with | [ x; y; z ] -> x, y, z | _ -> let n = List.length args in of_sexp_error (Printf.sprintf "%s expects three arguments, %d found" name n) sexp ;; let sexp_of_t sexp_of_value t = let rec aux t = match t with | Base x -> sexp_of_value x | True -> Atom "true" | False -> Atom "false" | Not t -> List [ Atom "not"; aux t ] | If (t1, t2, t3) -> List [ Atom "if"; aux t1; aux t2; aux t3 ] | And _ as t -> let ts = gather_conjuncts t in List (Atom "and" :: List.map ~f:aux ts) | Or _ as t -> let ts = gather_disjuncts t in List (Atom "or" :: List.map ~f:aux ts) in aux t ;; let t_of_sexp base_of_sexp sexp = let base sexp = base (base_of_sexp sexp) in let rec aux sexp = match sexp with | Atom kw -> (match String.lowercase_ascii kw with | "true" -> true_ | "false" -> false_ | _ -> base sexp) | List (Atom kw :: args) -> (match String.lowercase_ascii kw with | "and" -> and_ (List.map ~f:aux args) | "or" -> or_ (List.map ~f:aux args) | "not" -> not_ (aux (unary "not" args sexp)) | "if" -> let x, y, z = ternary "if" args sexp in if_ (aux x) (aux y) (aux z) | _ -> base sexp) | _ -> base sexp in aux sexp ;; end end include (Stable.V1 : module type of Stable.V1 with type 'a t := 'a t) let constant b = if b then true_ else false_ module type Constructors = sig val base : 'a -> 'a t val true_ : _ t val false_ : _ t val constant : bool -> _ t val not_ : 'a t -> 'a t val and_ : 'a t list -> 'a t val or_ : 'a t list -> 'a t val if_ : 'a t -> 'a t -> 'a t -> 'a t end module O = struct include T let not = not_ let and_ = and_ let or_ = or_ let constant = constant let ( && ) = andalso let ( || ) = orelse let ( ==> ) a b = (not a) || b end (* semantics *) let rec eval t base_eval = match t with | True -> true | False -> false | And (t1, t2) -> eval t1 base_eval && eval t2 base_eval | Or (t1, t2) -> eval t1 base_eval || eval t2 base_eval | Not t -> not (eval t base_eval) | If (t1, t2, t3) -> if eval t1 base_eval then eval t2 base_eval else eval t3 base_eval | Base x -> base_eval x ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>