package cstruct
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Access C-like structures directly from OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
cstruct-6.2.0.tbz
sha256=9a78073392580e8349148fa3ab4b1b2e989dc9d30d07401b04c96b7c60f03e62
sha512=8d33fe6b3707a3994d0225cd33cadde0bb2ca834ef01096e3df33a08e4a8c6d02ebccddf558a73988b8a5595b65fdc10de61efbf872c6c9e55c719c7e19c463d
doc/src/cstruct/cstruct.ml.html
Source file cstruct.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963(* * Copyright (c) 2012 Anil Madhavapeddy <anil@recoil.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) type buffer = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t (* Note: * * We try to maintain the property that no constructed [t] can ever point out of * its underlying buffer. This property is guarded by all of the constructing * functions and the fact that the type is private, and used by various * functions that would otherwise be completely unsafe. * * Furthermore, no operation on [t] is allowed to extend the view on the * underlying Bigarray structure, only narrowing is allowed. * * All well-intended souls are kindly invited to cross-check that the code * indeed maintains this invariant. *) type t = { buffer: buffer; off : int; len : int; } let pp_t ppf t = Format.fprintf ppf "[%d,%d](%d)" t.off t.len (Bigarray.Array1.dim t.buffer) let string_t ppf str = Format.fprintf ppf "[%d]" (String.length str) let bytes_t ppf str = Format.fprintf ppf "[%d]" (Bytes.length str) let err fmt = let b = Buffer.create 20 in (* for thread safety. *) let ppf = Format.formatter_of_buffer b in let k ppf = Format.pp_print_flush ppf (); invalid_arg (Buffer.contents b) in Format.kfprintf k ppf fmt let err_of_bigarray t = err "Cstruct.of_bigarray off=%d len=%d" t let err_sub t = err "Cstruct.sub: %a off=%d len=%d" pp_t t let err_shift t = err "Cstruct.shift %a %d" pp_t t let err_shiftv n = err "Cstruct.shiftv short by %d" n let err_copy_to_string caller t = err "Cstruct.%s %a off=%d len=%d" caller pp_t t let err_to_hex_string t = err "Cstruct.to_hex_string %a off=%d len=%d" pp_t t let err_blit_src src dst = err "Cstruct.blit src=%a dst=%a src-off=%d len=%d" pp_t src pp_t dst let err_blit_dst src dst = err "Cstruct.blit src=%a dst=%a dst-off=%d len=%d" pp_t src pp_t dst let err_blit_from_string_src src dst = err "Cstruct.blit_from_string src=%a dst=%a src-off=%d len=%d" string_t src pp_t dst let err_blit_from_string_dst src dst = err "Cstruct.blit_from_string src=%a dst=%a dst-off=%d len=%d" string_t src pp_t dst let err_blit_from_bytes_src src dst = err "Cstruct.blit_from_bytes src=%a dst=%a src-off=%d len=%d" bytes_t src pp_t dst let err_blit_from_bytes_dst src dst = err "Cstruct.blit_from_bytes src=%a dst=%a dst-off=%d len=%d" bytes_t src pp_t dst let err_blit_to_bytes_src src dst = err "Cstruct.blit_to_bytes src=%a dst=%a src-off=%d len=%d" pp_t src bytes_t dst let err_blit_to_bytes_dst src dst= err "Cstruct.blit_to_bytes src=%a dst=%a dst-off=%d len=%d" pp_t src bytes_t dst let err_invalid_bounds f = err "invalid bounds in Cstruct.%s %a off=%d len=%d" f pp_t [@@inline never] let err_split t = err "Cstruct.split %a start=%d off=%d" pp_t t let err_iter t = err "Cstruct.iter %a i=%d len=%d" pp_t t let of_bigarray ?(off=0) ?len buffer = let dim = Bigarray.Array1.dim buffer in let len = match len with | None -> dim - off | Some len -> len in if off < 0 || len < 0 || off + len < 0 || off + len > dim then err_of_bigarray off len else { buffer; off; len } let to_bigarray buffer = Bigarray.Array1.sub buffer.buffer buffer.off buffer.len let create_unsafe len = let buffer = Bigarray.(Array1.create char c_layout len) in { buffer ; len ; off = 0 } let check_bounds t len = len >= 0 && Bigarray.Array1.dim t.buffer >= len let empty = create_unsafe 0 external check_alignment_bigstring : buffer -> int -> int -> bool = "caml_check_alignment_bigstring" let check_alignment t alignment = if alignment > 0 then check_alignment_bigstring t.buffer t.off alignment else invalid_arg "check_alignment must be positive integer" type byte = char let byte (i:int) : byte = Char.chr i let byte_to_int (b:byte) = int_of_char b type uint8 = int type uint16 = int type uint32 = int32 type uint64 = int64 let debug t = let max_len = Bigarray.Array1.dim t.buffer in if t.off+t.len > max_len || t.len < 0 || t.off < 0 then ( Format.printf "ERROR: t.off+t.len=%d %a\n%!" (t.off+t.len) pp_t t; assert false; ) else Format.asprintf "%a" pp_t t let sub t off len = (* from https://github.com/mirage/ocaml-cstruct/pull/245 Cstruct.sub should select what a programmer intuitively expects a sub-cstruct to be. I imagine holding out my hands, with the left representing the start offset and the right the end. I think of a sub-cstruct as any span within this range. If I move my left hand only to the right (new_start >= t.off), and my right hand only to the left (new_end <= old_end), and they don't cross (new_start <= new_end), then I feel sure the result will be a valid sub-cstruct. And if I violate any one of these constraints (e.g. moving my left hand further left), then I feel sure that the result wouldn't be something I'd consider to be a sub-cstruct. Wrapping considerations in modular arithmetic: Note that if x is non-negative, and x + y wraps, then x + y must be negative. This is easy to see with modular arithmetic because if y is negative then the two arguments will cancel to some degree the result cannot be further from zero than one of the arguments. If y is positive then x + y can wrap, but even max_int + max_int doesn't wrap all the way to zero. The three possibly-wrapping operations are: new_start = t.off + off. t.off is non-negative so if this wraps then new_start will be negative and will fail the new_start >= t.off test. new_end = new_start + len. The above test ensures that new_start is non-negative in any successful return. So if this wraps then new_end will be negative and will fail the new_start <= new_end test. old_end = t.off + t.len. This uses only the existing trusted values. It could only wrap if the underlying bigarray had a negative length! *) let new_start = t.off + off in let new_end = new_start + len in let old_end = t.off + t.len in if new_start >= t.off && new_end <= old_end && new_start <= new_end then { t with off = new_start ; len } else err_sub t off len let shift t amount = let off = t.off + amount in let len = t.len - amount in if amount < 0 || amount > t.len || not (check_bounds t (off+len)) then err_shift t amount else { t with off; len } let rec skip_empty = function | t :: ts when t.len = 0 -> skip_empty ts | x -> x let rec shiftv ts = function | 0 -> skip_empty ts | n -> match ts with | [] -> err_shiftv n | t :: ts when n >= t.len -> shiftv ts (n - t.len) | t :: ts -> shift t n :: ts external unsafe_blit_bigstring_to_bigstring : buffer -> int -> buffer -> int -> int -> unit = "caml_blit_bigstring_to_bigstring" [@@noalloc] external unsafe_blit_string_to_bigstring : string -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc] external unsafe_blit_bytes_to_bigstring : Bytes.t -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc] external unsafe_blit_bigstring_to_bytes : buffer -> int -> Bytes.t -> int -> int -> unit = "caml_blit_bigstring_to_string" [@@noalloc] external unsafe_compare_bigstring : buffer -> int -> buffer -> int -> int -> int = "caml_compare_bigstring" [@@noalloc] external unsafe_fill_bigstring : buffer -> int -> int -> int -> unit = "caml_fill_bigstring" [@@noalloc] let copy_to_string caller src srcoff len = if len < 0 || srcoff < 0 || src.len - srcoff < len then err_copy_to_string caller src srcoff len else let b = Bytes.create len in unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) b 0 len; (* The following call is safe, since b is not visible elsewhere. *) Bytes.unsafe_to_string b let copy = copy_to_string "copy" let blit src srcoff dst dstoff len = if len < 0 || srcoff < 0 || src.len - srcoff < len then err_blit_src src dst srcoff len else if dstoff < 0 || dst.len - dstoff < len then err_blit_dst src dst dstoff len else unsafe_blit_bigstring_to_bigstring src.buffer (src.off+srcoff) dst.buffer (dst.off+dstoff) len let sub_copy cstr off len : t = let cstr2 = create_unsafe len in blit cstr off cstr2 0 len; cstr2 let blit_from_string src srcoff dst dstoff len = if len < 0 || srcoff < 0 || dstoff < 0 || String.length src - srcoff < len then err_blit_from_string_src src dst srcoff len else if dst.len - dstoff < len then err_blit_from_string_dst src dst dstoff len else unsafe_blit_string_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len let blit_from_bytes src srcoff dst dstoff len = if len < 0 || srcoff < 0 || dstoff < 0 || Bytes.length src - srcoff < len then err_blit_from_bytes_src src dst srcoff len else if dst.len - dstoff < len then err_blit_from_bytes_dst src dst dstoff len else unsafe_blit_bytes_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len let blit_to_bytes src srcoff dst dstoff len = if len < 0 || srcoff < 0 || dstoff < 0 || src.len - srcoff < len then err_blit_to_bytes_src src dst srcoff len else if Bytes.length dst - dstoff < len then err_blit_to_bytes_dst src dst dstoff len else unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) dst dstoff len let compare t1 t2 = let l1 = t1.len and l2 = t2.len in match compare l1 l2 with | 0 -> ( match unsafe_compare_bigstring t1.buffer t1.off t2.buffer t2.off l1 with | 0 -> 0 | r -> if r < 0 then -1 else 1 ) | r -> r let equal t1 t2 = compare t1 t2 = 0 (* Note that this is only safe as long as all [t]s are coherent. *) let memset t x = unsafe_fill_bigstring t.buffer t.off t.len x let create len = let t = create_unsafe len in memset t 0; t let set_uint8 t i c = if i >= t.len || i < 0 then err_invalid_bounds "set_uint8" t i 1 else Bigarray.Array1.set t.buffer (t.off+i) (Char.unsafe_chr c) let set_char t i c = if i >= t.len || i < 0 then err_invalid_bounds "set_char" t i 1 else Bigarray.Array1.set t.buffer (t.off+i) c let get_uint8 t i = if i >= t.len || i < 0 then err_invalid_bounds "get_uint8" t i 1 else Char.code (Bigarray.Array1.get t.buffer (t.off+i)) let get_char t i = if i >= t.len || i < 0 then err_invalid_bounds "get_char" t i 1 else Bigarray.Array1.get t.buffer (t.off+i) external ba_set_int16 : buffer -> int -> uint16 -> unit = "%caml_bigstring_set16u" external ba_set_int32 : buffer -> int -> uint32 -> unit = "%caml_bigstring_set32u" external ba_set_int64 : buffer -> int -> uint64 -> unit = "%caml_bigstring_set64u" external ba_get_int16 : buffer -> int -> uint16 = "%caml_bigstring_get16u" external ba_get_int32 : buffer -> int -> uint32 = "%caml_bigstring_get32u" external ba_get_int64 : buffer -> int -> uint64 = "%caml_bigstring_get64u" external swap16 : int -> int = "%bswap16" external swap32 : int32 -> int32 = "%bswap_int32" external swap64 : int64 -> int64 = "%bswap_int64" let set_uint16 swap p t i c = if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".set_uint16") t i 2 else ba_set_int16 t.buffer (t.off+i) (if swap then swap16 c else c) [@@inline] let set_uint32 swap p t i c = if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".set_uint32") t i 4 else ba_set_int32 t.buffer (t.off+i) (if swap then swap32 c else c) [@@inline] let set_uint64 swap p t i c = if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".set_uint64") t i 8 else ba_set_int64 t.buffer (t.off+i) (if swap then swap64 c else c) [@@inline] let get_uint16 swap p t i = if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".get_uint16") t i 2 else let r = ba_get_int16 t.buffer (t.off+i) in if swap then swap16 r else r [@@inline] let get_uint32 swap p t i = if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".get_uint32") t i 4 else let r = ba_get_int32 t.buffer (t.off+i) in if swap then swap32 r else r [@@inline] let get_uint64 swap p t i = if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".get_uint64") t i 8 else let r = ba_get_int64 t.buffer (t.off+i) in if swap then swap64 r else r [@@inline] module BE = struct let set_uint16 t i c = set_uint16 (not Sys.big_endian) "BE" t i c [@@inline] let set_uint32 t i c = set_uint32 (not Sys.big_endian) "BE" t i c [@@inline] let set_uint64 t i c = set_uint64 (not Sys.big_endian) "BE" t i c [@@inline] let get_uint16 t i = get_uint16 (not Sys.big_endian) "BE" t i [@@inline] let get_uint32 t i = get_uint32 (not Sys.big_endian) "BE" t i [@@inline] let get_uint64 t i = get_uint64 (not Sys.big_endian) "BE" t i [@@inline] end module LE = struct let set_uint16 t i c = set_uint16 Sys.big_endian "LE" t i c [@@inline] let set_uint32 t i c = set_uint32 Sys.big_endian "LE" t i c [@@inline] let set_uint64 t i c = set_uint64 Sys.big_endian "LE" t i c [@@inline] let get_uint16 t i = get_uint16 Sys.big_endian "LE" t i [@@inline] let get_uint32 t i = get_uint32 Sys.big_endian "LE" t i [@@inline] let get_uint64 t i = get_uint64 Sys.big_endian "LE" t i [@@inline] end module HE = struct let set_uint16 t i c = set_uint16 false "HE" t i c [@@inline] let set_uint32 t i c = set_uint32 false "HE" t i c [@@inline] let set_uint64 t i c = set_uint64 false "HE" t i c [@@inline] let get_uint16 t i = get_uint16 false "HE" t i [@@inline] let get_uint32 t i = get_uint32 false "HE" t i [@@inline] let get_uint64 t i = get_uint64 false "HE" t i [@@inline] end let length { len ; _ } = len (** [sum_lengths ~caller acc l] is [acc] plus the sum of the lengths of the elements of [l]. Raises [Invalid_argument caller] if arithmetic overflows. *) let rec sum_lengths_aux ~caller acc = function | [] -> acc | h :: t -> let sum = length h + acc in if sum < acc then invalid_arg caller else sum_lengths_aux ~caller sum t let sum_lengths ~caller l = sum_lengths_aux ~caller 0 l let lenv l = sum_lengths ~caller:"Cstruct.lenv" l let copyv ts = let sz = sum_lengths ~caller:"Cstruct.copyv" ts in let dst = Bytes.create sz in let _ = List.fold_left (fun off src -> let x = length src in unsafe_blit_bigstring_to_bytes src.buffer src.off dst off x; off + x ) 0 ts in (* The following call is safe, since dst is not visible elsewhere. *) Bytes.unsafe_to_string dst let fillv ~src ~dst = let rec aux dst n = function | [] -> n, [] | hd::tl -> let avail = length dst in let first = length hd in if first <= avail then ( blit hd 0 dst 0 first; aux (shift dst first) (n + first) tl ) else ( blit hd 0 dst 0 avail; let rest_hd = shift hd avail in (n + avail, rest_hd :: tl) ) in aux dst 0 src let to_string ?(off=0) ?len:sz t = let len = match sz with None -> length t - off | Some l -> l in copy_to_string "to_string" t off len let to_hex_string ?(off=0) ?len:sz t : string = let[@inline] nibble_to_char (i:int) : char = if i < 10 then Char.chr (i + Char.code '0') else Char.chr (i - 10 + Char.code 'a') in let len = match sz with None -> length t - off | Some l -> l in if len < 0 || off < 0 || t.len - off < len then err_to_hex_string t off len else ( let out = Bytes.create (2 * len) in for i=0 to len-1 do let c = Char.code @@ Bigarray.Array1.get t.buffer (i+t.off+off) in Bytes.set out (2*i) (nibble_to_char (c lsr 4)); Bytes.set out (2*i+1) (nibble_to_char (c land 0xf)); done; Bytes.unsafe_to_string out ) let to_bytes ?off ?len t = Bytes.unsafe_of_string (to_string ?off ?len t) let [@inline always] of_data_abstract blitfun lenfun ?allocator ?(off=0) ?len buf = let buflen = match len with | None -> lenfun buf - off | Some len -> len in match allocator with | None -> let c = create_unsafe buflen in blitfun buf off c 0 buflen; c | Some fn -> let c = fn buflen in blitfun buf off c 0 buflen; { c with len = buflen } let of_string ?allocator ?off ?len buf = of_data_abstract blit_from_string String.length ?allocator ?off ?len buf let of_bytes ?allocator ?off ?len buf = of_data_abstract blit_from_bytes Bytes.length ?allocator ?off ?len buf let of_hex ?(off=0) ?len str = let str = let l = match len with None -> String.length str - off | Some l -> l in String.sub str off l in let string_fold ~f ~z str = let st = ref z in ( String.iter (fun c -> st := f !st c) str ; !st ) in let hexdigit p = function | 'a' .. 'f' as x -> int_of_char x - 87 | 'A' .. 'F' as x -> int_of_char x - 55 | '0' .. '9' as x -> int_of_char x - 48 | x -> Format.ksprintf invalid_arg "of_hex: invalid character at pos %d: %C" p x in let whitespace = function | ' ' | '\t' | '\r' | '\n' -> true | _ -> false in match string_fold ~f:(fun (cs, i, p, acc) -> let p' = succ p in function | char when whitespace char -> (cs, i, p', acc) | char -> match acc, hexdigit p char with | (None , x) -> (cs, i, p', Some (x lsl 4)) | (Some y, x) -> set_uint8 cs i (x lor y) ; (cs, succ i, p', None)) ~z:(create_unsafe (String.length str lsr 1), 0, 0, None) str with | _ , _, _, Some _ -> Format.ksprintf invalid_arg "of_hex: odd numbers of characters" | cs, i, _, _ -> sub cs 0 i let hexdump_pp fmt t = let before fmt = function | 0 -> () | 8 -> Format.fprintf fmt " "; | _ -> Format.fprintf fmt " " in let after fmt = function | 15 -> Format.fprintf fmt "@;" | _ -> () in Format.pp_open_vbox fmt 0 ; for i = 0 to length t - 1 do let column = i mod 16 in let c = Char.code (Bigarray.Array1.get t.buffer (t.off+i)) in Format.fprintf fmt "%a%.2x%a" before column c after column done ; Format.pp_close_box fmt () let hexdump = Format.printf "@\n%a@." hexdump_pp let hexdump_to_buffer buf t = let f = Format.formatter_of_buffer buf in Format.fprintf f "@\n%a@." hexdump_pp t let split ?(start=0) t off = try let header =sub t start off in let body = sub t (start+off) (length t - off - start) in header, body with Invalid_argument _ -> err_split t start off type 'a iter = unit -> 'a option let iter lenfn pfn t = let body = ref (Some t) in let i = ref 0 in fun () -> match !body with |Some buf when length buf = 0 -> body := None; None |Some buf -> begin match lenfn buf with |None -> body := None; None |Some plen -> incr i; let p,rest = try split buf plen with Invalid_argument _ -> err_iter buf !i plen in body := Some rest; Some (pfn p) end |None -> None let rec fold f next acc = match next () with | None -> acc | Some v -> fold f next (f acc v) let append cs1 cs2 = let l1 = length cs1 and l2 = length cs2 in let cs = create_unsafe (l1 + l2) in blit cs1 0 cs 0 l1 ; blit cs2 0 cs l1 l2 ; cs let concat = function | [] -> create_unsafe 0 | [cs] -> cs | css -> let result = create_unsafe (sum_lengths ~caller:"Cstruct.concat" css) in let aux off cs = let n = length cs in blit cs 0 result off n ; off + n in ignore @@ List.fold_left aux 0 css ; result let rev t = let n = length t in let out = create_unsafe n in for i_src = 0 to n - 1 do let byte = get_uint8 t i_src in let i_dst = n - 1 - i_src in set_uint8 out i_dst byte done; out (* Convenience function. *) external unsafe_blit_string_to_bigstring : string -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc] let get { buffer; off; len; } zidx = if zidx < 0 || zidx >= len then invalid_arg "index out of bounds" ; Bigarray.Array1.get buffer (off + zidx) let get_byte { buffer; off; len; } zidx = if zidx < 0 || zidx >= len then invalid_arg "index out of bounds" ; Char.code (Bigarray.Array1.get buffer (off + zidx)) let string ?(off= 0) ?len str = let str_len = String.length str in let len = match len with None -> str_len | Some len -> len in if off < 0 || len < 0 || off + len > str_len then invalid_arg "index out of bounds" ; let buffer = Bigarray.(Array1.create char c_layout str_len) in unsafe_blit_string_to_bigstring str 0 buffer 0 str_len ; of_bigarray ~off ~len buffer let buffer ?(off= 0) ?len buffer = let buffer_len = Bigarray.Array1.dim buffer in let len = match len with None -> buffer_len - off | Some len -> len in if off < 0 || len < 0 || off + len > buffer_len then invalid_arg "index out of bounds" ; of_bigarray ~off ~len buffer let start_pos { off; _ } = off let stop_pos { off; len; _ } = off + len let head ?(rev= false) ({ len; _ } as cs) = if len = 0 then None else Some (get_char cs (if rev then len - 1 else 0)) let tail ?(rev= false) ({ buffer; off; len; } as cs) = if len = 0 then cs else if rev then of_bigarray ~off ~len:(len - 2) buffer else of_bigarray ~off:(off + 1) ~len:(len - 1) buffer let is_empty { len; _ } = len = 0 let is_prefix ~affix:({ len= alen; _ } as affix) ({ len; _ } as cs) = if alen > len then false else let max_zidx = alen - 1 in let rec loop i = if i > max_zidx then true else if get_char affix i <> get_char cs i then false else loop (succ i) in loop 0 let is_infix ~affix:({ len= alen; _ } as affix) ({ len; _ } as cs) = if alen > len then false else let max_zidx_a = alen - 1 in let max_zidx_s = len - alen in let rec loop i k = if i > max_zidx_s then false else if k > max_zidx_a then true else if k > 0 then if get_char affix k = get_char cs (i + k) then loop i (succ k) else loop (succ i) 0 else if get_char affix 0 = get_char cs i then loop i 1 else loop (succ i) 0 in loop 0 0 let is_suffix ~affix:({ len= alen; _ } as affix) ({ len; _ } as cs) = if alen > len then false else let max_zidx = alen - 1 in let max_zidx_a = alen - 1 in let max_zidx_s = len - 1 in let rec loop i = if i > max_zidx then true else if get_char affix (max_zidx_a - i) <> get_char cs (max_zidx_s - i) then false else loop (succ i) in loop 0 let for_all sat cs = let rec go acc i = if i < length cs then go (sat (get_char cs i) && acc) (succ i) else acc in go true 0 let exists sat cs = let rec go acc i = if i < length cs then go (sat (get_char cs i) || acc) (succ i) else acc in go false 0 let start { buffer; off; _ } = of_bigarray buffer ~off ~len:0 let stop { buffer; off; len; } = of_bigarray buffer ~off:(off + len) ~len:0 let is_white = function ' ' | '\t' .. '\r' -> true | _ -> false let trim ?(drop = is_white) ({ buffer; off; len; } as cs) = if len = 0 then cs else let max_zpos = len in let max_zidx = len - 1 in let rec left_pos i = if i > max_zidx then max_zpos else if drop (get_char cs i) then left_pos (succ i) else i in let rec right_pos i = if i < 0 then 0 else if drop (get_char cs i) then right_pos (pred i) else succ i in let left = left_pos 0 in if left = max_zpos then of_bigarray buffer ~off:((off * 2 + len) / 2) ~len:0 else let right = right_pos max_zidx in if left = 0 && right = max_zpos then cs else of_bigarray buffer ~off:(off + left) ~len:(right - left) let fspan ~min ~max ~sat ({ buffer= v; off; len; } as cs) = if min < 0 then invalid_arg "span: negative min" ; if max < 0 then invalid_arg "span: negative max" ; if min > max || max = 0 then (buffer ~off:off ~len:0 v, cs) else let max_zidx = len - 1 in let max_zidx = let k = max - 1 in if k > max_zidx || k < 0 then max_zidx else k in let need_zidx = min in let rec loop i = if i <= max_zidx && sat (get_char cs i) then loop (i + 1) else if i < need_zidx || i = 0 then buffer ~off:off ~len:0 v, cs else if i = len then (cs, buffer ~off:(off + len) ~len:0 v) else buffer ~off:off ~len:i v, buffer ~off:(off + i) ~len:(len - i) v in loop 0 let rspan ~min ~max ~sat ({ buffer= v; off; len; } as cs) = if min < 0 then invalid_arg "span: negative min" ; if max < 0 then invalid_arg "span: negative max" ; if min > max || max = 0 then (cs, buffer ~off:(off + len) ~len:0 v) else let max_zidx = len - 1 in let min_zidx = let k = len - max in if k < 0 then 0 else k in let need_zidx = len - min - 1 in let rec loop i = if i >= min_zidx && sat (get_char cs i) then loop (i - 1) else if i > need_zidx || i = max_zidx then (cs, buffer ~off:(off + len) ~len:0 v) else if i < 0 then (buffer ~off:off ~len:0 v, cs) else (buffer ~off:off ~len:(i + 1) v, buffer ~off:(off + i + 1) ~len:(len - (i + 1)) v) in loop max_zidx let span ?(rev= false) ?(min= 0) ?(max= max_int) ?(sat= fun _ -> true) cs = match rev with | true -> rspan ~min ~max ~sat cs | false -> fspan ~min ~max ~sat cs let take ?(rev= false) ?min ?max ?sat cs = (if rev then snd else fst) @@ span ~rev ?min ?max ?sat cs let drop ?(rev= false) ?min ?max ?sat cs = (if rev then fst else snd) @@ span ~rev ?min ?max ?sat cs let fcut ~sep:({ len= sep_len; _ } as sep) ({ buffer= v; off; len; } as cs) = if sep_len = 0 then invalid_arg "cut: empty separator" ; let max_sep_zidx = sep_len - 1 in let max_s_zidx = len - sep_len in let rec check_sep i k = if k > max_sep_zidx then Some (buffer ~off:off ~len:i v, buffer ~off:(off + i + sep_len) ~len:(len - i - sep_len) v) else if get_char cs (i + k) = get_char sep k then check_sep i (k + 1) else scan (i + 1) and scan i = if i > max_s_zidx then None else if get_char cs i = get_char sep 0 then check_sep i 1 else scan (i + 1) in scan 0 let rcut ~sep:({ len= sep_len; _ } as sep) ({ buffer= v; off; len; } as cs) = if sep_len = 0 then invalid_arg "cut: empty separator" ; let max_sep_zidx = sep_len - 1 in let max_s_zidx = len - 1 in let rec check_sep i k = if k > max_sep_zidx then Some (buffer ~off:off ~len:i v, buffer ~off:(off + i + sep_len) ~len:(len - i - sep_len) v) else if get_char cs (i + k) = get_char sep k then check_sep i (k + 1) else rscan (i - 1) and rscan i = if i < 0 then None else if get_char cs i = get_char sep 0 then check_sep i 1 else rscan (i - 1) in rscan (max_s_zidx - max_sep_zidx) let cut ?(rev= false) ~sep cs = match rev with | true -> rcut ~sep cs | false -> fcut ~sep cs let add_sub ~no_empty buf ~off ~len acc = if len = 0 then ( if no_empty then acc else buffer ~off ~len buf :: acc ) else buffer ~off ~len buf :: acc let fcuts ~no_empty ~sep:({ len= sep_len; _ } as sep) ({ buffer; off; len; } as cs) = if sep_len = 0 then invalid_arg "cuts: empty separator" ; let max_sep_zidx = sep_len - 1 in let max_s_zidx = len - sep_len in let rec check_sep zanchor i k acc = if k > max_sep_zidx then let new_start = i + sep_len in scan new_start new_start (add_sub ~no_empty buffer ~off:(off + zanchor) ~len:(i - zanchor) acc) else if get_char cs (i + k) = get_char sep k then check_sep zanchor i (k + 1) acc else scan zanchor (i + 1) acc and scan zanchor i acc = if i > max_s_zidx then if zanchor = 0 then (if no_empty && len = 0 then [] else [ cs ]) else List.rev (add_sub ~no_empty buffer ~off:(off + zanchor) ~len:(len - zanchor) acc) else if get_char cs i = get_char sep 0 then check_sep zanchor i 1 acc else scan zanchor (i + 1) acc in scan 0 0 [] let rcuts ~no_empty ~sep:({ len= sep_len; _ } as sep) ({ buffer; len; _ } as cs) = if sep_len = 0 then invalid_arg "cuts: empty separator" ; let s_len = len in let max_sep_zidx = sep_len - 1 in let max_s_zidx = len - 1 in let rec check_sep zanchor i k acc = if k > max_sep_zidx then let off = i + sep_len in rscan i (i - sep_len) (add_sub ~no_empty buffer ~off ~len:(zanchor - off) acc) else if get_char cs (i + k) = get_char cs k then check_sep zanchor i (k + 1) acc else rscan zanchor (i - 1) acc and rscan zanchor i acc = if i < 0 then if zanchor = s_len then ( if no_empty && s_len = 0 then [] else [ cs ]) else add_sub ~no_empty buffer ~off:0 ~len:zanchor acc else if get_char cs i = get_char sep 0 then check_sep zanchor i 1 acc else rscan zanchor (i - 1) acc in rscan s_len (max_s_zidx - max_sep_zidx) [] let cuts ?(rev= false) ?(empty= true) ~sep cs = match rev with | true -> rcuts ~no_empty:(not empty) ~sep cs | false -> fcuts ~no_empty:(not empty) ~sep cs let fields ?(empty= false) ?(is_sep= is_white) ({ buffer; off; len; } as cs) = let no_empty = not empty in let max_pos = len in let rec loop i end_pos acc = if i < 0 then begin if end_pos = len then ( if no_empty && len = 0 then [] else [ cs ]) else add_sub ~no_empty buffer ~off:off ~len:(end_pos - (i + 1)) acc end else begin if not (is_sep (get_char cs i)) then loop (i - 1) end_pos acc else loop (i - 1) i (add_sub ~no_empty buffer ~off:(off + i + 1) ~len:(end_pos - (i + 1)) acc) end in loop (max_pos - 1) max_pos [] let ffind sat ({ buffer= v; len; _ } as cs) = let max_idx = len - 1 in let rec loop i = if i > max_idx then None else if sat (get_char cs i) then Some (buffer ~off:i ~len:1 v) else loop (i + 1) in loop 0 let rfind sat ({ buffer= v; len; _ } as cs) = let rec loop i = if i < 0 then None else if sat (get_char cs i) then Some (buffer ~off:i ~len:1 v) else loop (i - 1) in loop (len - 1) let find ?(rev= false) sat cs = match rev with | true -> rfind sat cs | false -> ffind sat cs let ffind_sub ~sub:({ len= sub_len; _ } as sub) ({ buffer= v; off; len; } as cs) = if sub_len > len then None else let max_zidx_sub = sub_len - 1 in let max_zidx_s = len - sub_len in let rec loop i k = if i > max_zidx_s then None else if k > max_zidx_sub then Some (buffer v ~off:(off + i) ~len:sub_len) else if k > 0 then ( if get_char sub k = get_char cs (i + k) then loop i (k + 1) else loop (i + 1) 0 ) else if get_char sub 0 = get_char cs i then loop i 1 else loop (i + 1) 0 in loop 0 0 let rfind_sub ~sub:({ len= sub_len; _ } as sub) ({ buffer= v; len; _ } as cs) = if sub_len > len then None else let max_zidx_sub = sub_len - 1 in let rec loop i k = if i < 0 then None else if k > max_zidx_sub then Some (buffer v ~off:i ~len:sub_len) else if k > 0 then ( if get_char sub k = get_char cs (i + k) then loop i (k + 1) else loop (i - 1) 0 ) else if get_char sub 0 = get_char cs i then loop i 1 else loop (i - 1) 0 in loop (len - sub_len) 0 let find_sub ?(rev= false) ~sub cs = match rev with | true -> rfind_sub ~sub cs | false -> ffind_sub ~sub cs let filter sat ({ len; _ } as cs) = if len = 0 then empty else let b = create len in let max_zidx = len - 1 in let rec loop b k i = if i > max_zidx then (if k = len then b else sub b 0 k) else let chr = get_char cs i in if sat chr then ( set_char b k chr ; loop b (k + 1) (i + 1)) else loop b k (i + 1) in loop b 0 0 let filter_map f ({ len; _ } as cs) = if len = 0 then empty else let b = create len in let max_zidx = len - 1 in let rec loop b k i = if i > max_zidx then (if k = len then b else sub b 0 k) else match f (get_char cs i) with | Some chr -> set_char b i chr ; loop b (k + 1) (i + 1) | None -> loop b k (i + 1) in loop b 0 0 let map f ({ len; _ } as cs) = if len = 0 then empty else let b = create len in for i = 0 to len - 1 do set_char b i (f (get_char cs i)) done ; b let mapi f ({ len; _ } as cs) = if len = 0 then empty else let b = create len in for i = 0 to len - 1 do set_char b i (f i (get_char cs i)) done ; b
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>