package core_unix
- Overview
- No Docs
You can search for identifiers within the package.
in-package search v0.2.0
Unix-specific portions of Core
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.15.2.tar.gz
sha256=486d0e954603960fa081b3fd23e3cc3e50ac0892544acd35f9c2919c4bf5f67b
doc/src/core_unix.time_stamp_counter/time_stamp_counter.ml.html
Source file time_stamp_counter.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
(* Time stamp counter ================== This module tries to estimate time based on the CPU time stamp counter (TSC). The time estimates reported by this module are monotonically increasing. It uses [Time.now ()] as its measure of "real time" to do this. Historically, the rate of increment of the TSC (sometimes referred to as the TSC frequency) varied based of CPU overclocking, temperature, load etc. On modern Intel CPU's the TSC is expected to be stable. On Linux systems, the "constant_tsc" in /proc/cpuinfo indicates that the machine has a stable TSC rate. While this module assumes that the TSC is relatively stable, it can adapt to small variations in the TSC frequency. Simple Overview =============== Here is an explanation of how this module works. The module measures the change in real time and the change in TSC at every calibration call and maintains an EWMA of these deltas. It then uses the EWMA values to do linear regression where time is the estimated value and TSC is the predictor. The linear regression done at every calibration step produces an updated time/tsc slope. Using this time/tsc slope and the latest value of real time, the module estimates time in terms of tsc. Ensuring Monotonicity of Time ============================= The simple picture above is complicated by the presence of noise. There are two significant sources of noise. The first is the noise caused by variations in the frequency of TSC. The second, and probably the more significant one, is noise in real time, i.e. noise in the [Time.now ()] call. (1) [Time.now ()] calls suffer from the overhead of transition from the user program to a kernel vdso and (2) It is affected by NTP updates. (3) Another significant source of error comes from loss of precision. [Time.now] reports a 64-bit float of which it has 52 bits of mantissa. The 52 bits of mantissa for time in seconds from Unix epoch only allows for precision in the order of micro-seconds. Consequently the measurement of time using [Time.now] can only be precise in the order of micro-seconds. Noise in measuring real time and in the rate of time/tsc implies that at each calibration point the estimated time "jumps" up or down with respect to the estimate value of time before calibration. In other words, the time estimated using the EWMA linear regression is not strictly monotonic. We report a monotonic time in terms of the estimated time, by maintaining a separate slope called the "monotonic time/TSC slope". At every calibration point, we take the last estimated time and adjust the monotonic time/TSC slope such that it catches up to the estimated time in a fixed number of cycles. If the expected change in slope is too high, we bound the rate of change of the monotonic time/TSC slope. As long as monotonic time has not caught up with the estimated time we report time in terms of the adjusted monotonic time slope. Once we have caught up to the estimated time, we start reporting the estimated time. We can chose the number of cycles to allow for catchup to be any number we wish. A number in the order of 1E6-1E9 TSC steps allows for a gradual catchup rate without too many abrupt changes in the rate of reported time. The bound to rate of change is expressed in percentage terms of slope and is at max the ratio by which we expect the underlying TSC frequency to change on the machine. It is defined as [max_perc_change_from_real_slope] below. It is worth noting that the approximation of the monotonic slope trying to catch up with the estimate slope can be achieved in many other ways. A more principled approach to this would be to use a PID controller that adapts to error and gets the reported monotonic time to smoothly fit the estimated time. However PID controllers are computationally more expensive and we use a simpler linear approximation. *) [%%import "config.h"] open! Core open Poly open! Import let max_percent_change_from_real_slope = 0.20 let () = assert (0. <= max_percent_change_from_real_slope); assert (max_percent_change_from_real_slope <= 1.) ;; let ewma ~alpha ~old ~add = ((1. -. alpha) *. old) +. (alpha *. add) type t = Int63.t [@@deriving bin_io, compare, sexp, typerep] type tsc = t [@@deriving bin_io, compare, sexp] include (Int63 : Comparisons.S with type t := t) let diff t1 t2 = Int63.( - ) t1 t2 let add t s = Int63.( + ) t s let of_int63 t = t let to_int63 t = t let zero = Int63.zero [%%ifdef JSC_ARCH_SIXTYFOUR] (* noalloc on x86_64 only *) let now () = Ocaml_intrinsics.Perfmon.rdtsc () |> Stdlib.Int64.to_int |> Int63.of_int module Calibrator = struct (* performance hack: prevent writes to this record from boxing floats by making all fields mutable floats *) type float_fields = { (* the most recent observations and regression results *) mutable time : float ; mutable sec_per_cycle : float (* mutable sec_error_intercept : float; *) (* this time value is monotonically increasing *) ; mutable monotonic_time : float ; mutable monotonic_sec_per_cycle : float (* for linear regression *) ; mutable ewma_time_tsc : float ; mutable ewma_tsc_square : float ; mutable ewma_time : float ; mutable ewma_tsc : float (* for computing time in nanos *) ; mutable nanos_per_cycle : float ; mutable monotonic_nanos_per_cycle : float } [@@deriving bin_io, sexp] type t = { (* the most recent observations and regression results *) mutable tsc : tsc (* this time value is monotonically increasing *) ; mutable monotonic_until_tsc : tsc (* for computing time in nanos *) ; mutable time_nanos : Int63.t ; mutable monotonic_time_nanos : Int63.t ; floats : float_fields } [@@deriving bin_io, fields, sexp] let tsc_to_seconds_since_epoch = let[@inline] convert t tsc base mul = base +. (mul *. Int63.to_float (diff tsc t.tsc)) in fun [@inline] t tsc -> 0. +. (* performance hack: stops float boxing *) if tsc < t.monotonic_until_tsc then 0. +. (* performance hack: stops float boxing *) convert t tsc t.floats.monotonic_time t.floats.monotonic_sec_per_cycle else 0. +. (* performance hack: stops float boxing *) convert t tsc t.floats.time t.floats.sec_per_cycle ;; let tsc_to_nanos_since_epoch = let convert t tsc base mul = (* Scale an int by a float without intermediate allocation and overflow. *) Int63.( + ) base (Float.int63_round_nearest_exn (mul *. Int63.to_float (diff tsc t.tsc))) in fun t tsc -> if tsc < t.monotonic_until_tsc then convert t tsc t.monotonic_time_nanos t.floats.monotonic_nanos_per_cycle else convert t tsc t.time_nanos t.floats.nanos_per_cycle ;; (* The rate of response to the variations in TSC frequency can be controlled via alpha. Alpha should be in (0,1] and controls the decay of the subsequent EWMA calculation. A low number such as 0.01 suggests that the TSC is largely stable and small variations should be treated as noise. Setting this number to 0.6 or higher indicates that each new measurement of the TSC should significantly outweigh past measurements which has the effect of making time calibration more responsive to frequency changes. In this module we have chosen a value of alpha that varies with the duration of time, i.e. longer time samples are given more weight and shorter time samples are given lesser weight. *) let alpha_for_interval time_diff = 0. +. Float.max 0. (1. -. exp (-0.5 *. time_diff)) let catchup_cycles = 1E9 let initial_alpha = 1. (* performance hack: This function is the same as {[ match Float.iround_up float with | None -> if_iround_up_fails | Some i -> Int63.(+) int i ]} but I couldn't find a way to make the simple version stop allocating, even with flambda turned on *) let iround_up_and_add int ~if_iround_up_fails float = if Float.( > ) float 0.0 then ( let float' = Caml.ceil float in if Float.( <= ) float' Float.iround_ubound then Int63.( + ) int (Int63.of_float_unchecked float') else if_iround_up_fails) else if Float.( >= ) float Float.iround_lbound then Int63.( + ) int (Int63.of_float_unchecked float) else if_iround_up_fails ;; let[@inline] calibrate_using t ~tsc ~time ~am_initializing = let estimated_time = 0. +. (* performance hack: stops float boxing *) tsc_to_seconds_since_epoch t tsc in let time_diff_est = time -. estimated_time in let time_diff = time -. t.floats.time in let tsc_diff = Int63.to_float (diff tsc t.tsc) in let alpha = if am_initializing then initial_alpha else alpha_for_interval time_diff in (* update current times *) t.floats.time <- time; t.tsc <- tsc; (* update ewma and regression. *) t.floats.ewma_time_tsc <- ewma ~alpha ~old:t.floats.ewma_time_tsc ~add:(tsc_diff *. time_diff); t.floats.ewma_tsc_square <- ewma ~alpha ~old:t.floats.ewma_tsc_square ~add:(tsc_diff *. tsc_diff); t.floats.ewma_tsc <- ewma ~alpha ~old:t.floats.ewma_tsc ~add:tsc_diff; t.floats.ewma_time <- ewma ~alpha ~old:t.floats.ewma_time ~add:time_diff; (* linear regression *) t.floats.sec_per_cycle <- t.floats.ewma_time_tsc /. t.floats.ewma_tsc_square; (* t.sec_error_intercept <- t.ewma_time -. t.sec_per_cycle *. t.ewma_tsc; *) (* monotonic predicted time and slope. *) t.floats.monotonic_time <- estimated_time; if not am_initializing then ( let catchup_sec_per_cycle = (* The slope so that after [catchup_cycles], the monotonic estimated time equals the estimated time, i.e. solve for [monotonic_sec_per_cycle] in: {[ t.monotonic_time + monotonic_sec_per_cycle * catchup_cycles = t.time + t.sec_per_cycle * catchup_cycles ]} Note that [time_diff_est = t.time - t.monotonic_time]. *) t.floats.sec_per_cycle +. (time_diff_est /. catchup_cycles) in t.floats.monotonic_sec_per_cycle <- (if Float.is_positive time_diff_est then 0. +. (* performance hack: stops float boxing *) Float.min catchup_sec_per_cycle (t.floats.sec_per_cycle *. (1. +. max_percent_change_from_real_slope)) else 0. +. (* performance hack: stops float boxing *) Float.max catchup_sec_per_cycle (t.floats.sec_per_cycle *. (1. -. max_percent_change_from_real_slope))); (* Compute the number of cycles in the future at which monotonic estimated time equals estimated time, i.e. solve for [cycles] in: {[ t.monotonic_time + t.monotonic_sec_per_cycle * cycles = t.time + t.sec_per_cycle * cycles ]} This value might get very small when the two slopes are about the same. In such cases we just use the estimated slope always. *) t.monotonic_until_tsc <- time_diff_est /. (t.floats.monotonic_sec_per_cycle -. t.floats.sec_per_cycle) |> iround_up_and_add tsc ~if_iround_up_fails:Int63.zero); (* Precompute values required for [tsc_to_nanos_since_epoch]. *) t.time_nanos <- Float.int63_round_nearest_exn (t.floats.time *. 1E9); t.floats.nanos_per_cycle <- t.floats.sec_per_cycle *. 1E9; t.monotonic_time_nanos <- Float.int63_round_nearest_exn (t.floats.monotonic_time *. 1E9); t.floats.monotonic_nanos_per_cycle <- t.floats.monotonic_sec_per_cycle *. 1E9 ;; let now_float () = 1E-9 *. Int.to_float (Time_ns.to_int_ns_since_epoch (Time_ns.now ())) let initialize t samples = List.iter samples ~f:(fun (tsc, time) -> calibrate_using t ~tsc ~time ~am_initializing:true) ;; let collect_samples ~num_samples ~interval = assert (Int.( >= ) num_samples 1); (* We sleep at differing intervals to improve the estimation of [sec_per_cycle]. *) let rec loop n sleep = let sample = now (), now_float () in if Int.( = ) n 1 then [ sample ] else ( ignore (Unix.nanosleep sleep); sample :: loop (n - 1) (sleep +. interval)) in loop num_samples interval ;; let create_using ~tsc ~time ~samples = let t = { monotonic_until_tsc = Int63.zero ; tsc ; time_nanos = Int63.zero ; monotonic_time_nanos = Int63.zero ; floats = { monotonic_time = time ; sec_per_cycle = 0. ; monotonic_sec_per_cycle = 0. ; time ; ewma_time_tsc = 0. ; ewma_tsc_square = 0. ; ewma_time = 0. ; ewma_tsc = 0. ; nanos_per_cycle = 0. ; monotonic_nanos_per_cycle = 0. } } in initialize t samples; t ;; let create () = let time = now_float () in let tsc = now () in let samples = collect_samples ~num_samples:3 ~interval:0.0005 in create_using ~tsc ~time ~samples ;; (* Creating a calibrator takes about 3ms. *) let t = lazy (create ()) let cpu_mhz = Ok (fun t -> 1. /. (t.floats.sec_per_cycle *. 1E6)) (* performance hack: [@cold] so [time] is always unboxed. [now_float] and [calibrate_using] need to be inlined into the same function for unboxed [time]. Preventing [calibrate] from being inlined makes the compiler's inlining decision more predictable. *) let[@cold] calibrate t = calibrate_using t ~tsc:(now ()) ~time:(now_float ()) ~am_initializing:false ;; module Private = struct let create_using = create_using let calibrate_using = calibrate_using let initialize = initialize let nanos_per_cycle t = t.floats.nanos_per_cycle end end [%%else] (* noalloc on x86_64 only *) external now : unit -> tsc = "tsc_get" (* Outside of x86_64, [now] returns the result of clock_gettime(), i.e. the current time in nanos past epoch. *) module Calibrator = struct type t = unit [@@deriving bin_io, sexp] let tsc_to_seconds_since_epoch _t tsc = Int63.to_float tsc *. 1e-9 let tsc_to_nanos_since_epoch _t tsc = tsc let create_using ~tsc:_ ~time:_ ~samples:_ = () let create () = () let initialize _t _samples = () let calibrate_using _t ~tsc:_ ~time:_ ~am_initializing:_ = () let calibrate _ = () let t = lazy (create ()) let cpu_mhz = Or_error.unimplemented "Time_stamp_counter.Calibrator.cpu_mhz is not defined for 32-bit platforms" ;; module Private = struct let create_using = create_using let calibrate_using = calibrate_using let initialize = initialize let nanos_per_cycle _ = 1. end end [%%endif] module Span = struct include Int63 module Private = struct let of_int63 t = t let to_int63 t = t end [%%ifdef JSC_ARCH_SIXTYFOUR] let to_ns t ~(calibrator : Calibrator.t) = Float.int63_round_nearest_exn (Int63.to_float t *. calibrator.floats.nanos_per_cycle) ;; (* If the calibrator has not been well calibrated and [ns] is a large value, the following can overflow. This happens rarely in hydra in a way that difficult to reproduce. We've improved the exn here so that we have more information to debug these spurious errors when they come up. *) let of_ns ns ~(calibrator : Calibrator.t) = try Float.int63_round_nearest_exn (Int63.to_float ns /. calibrator.floats.nanos_per_cycle) with | exn -> raise_s [%message "" ~_:(exn : Exn.t) (calibrator : Calibrator.t)] ;; [%%else] (* [tsc_get] already returns the current time in ns *) let to_ns t ~calibrator:_ = t let of_ns ns ~calibrator:_ = ns [%%endif] let to_time_ns_span t ~calibrator = Time_ns.Span.of_int63_ns (to_ns t ~calibrator) let of_time_ns_span span ~calibrator = of_ns (Time_ns.Span.to_int63_ns span) ~calibrator end let calibrator = Calibrator.t let to_time t ~calibrator = Calibrator.tsc_to_seconds_since_epoch calibrator t |> Time.Span.of_sec |> Time.of_span_since_epoch ;; let to_nanos_since_epoch t ~calibrator = Calibrator.tsc_to_nanos_since_epoch calibrator t let to_time_ns t ~calibrator = Time_ns.of_int63_ns_since_epoch (to_nanos_since_epoch ~calibrator t) ;; module Private = struct let ewma = ewma let of_int63 = of_int63 let max_percent_change_from_real_slope = max_percent_change_from_real_slope let to_nanos_since_epoch = to_nanos_since_epoch end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>