core_kernel

Industrial strength alternative to OCaml's standard library
IN THIS PACKAGE
include module type of struct include Core end
module Applicative = Core.Applicative
module Arg = Core.Arg
module Array = Core.Array
module Avltree = Core.Avltree
module Backtrace = Core.Backtrace
module Bag = Core.Bag
module Bigbuffer = Core.Bigbuffer
module Bigstring = Core.Bigstring
module Bigsubstring = Core.Bigsubstring
module Bin_prot = Core.Bin_prot
module Binable = Core.Binable
module Binary_searchable = Core.Binary_searchable
module Blang = Core.Blang
module Blit = Core.Blit
module Bool = Core.Bool
module Bounded_index = Core.Bounded_index
module Buffer = Core.Buffer
module Byte_units = Core.Byte_units
module Bytes = Core.Bytes
module Caml = Core.Caml
module Char = Core.Char
module Command = Core.Command
module Comparable = Core.Comparable
module Comparator = Core.Comparator
module Comparisons = Core.Comparisons
module Container = Core.Container
module Container_intf = Core.Container_intf
module Continue_or_stop = Core.Continue_or_stop
module Core_kernel_stable = Core.Core_kernel_stable
module Core_stable = Core.Core_stable
module Date = Core.Date
module Day_of_week = Core.Day_of_week
module Debug = Core.Debug
module Deque = Core.Deque
module Deriving_hash = Core.Deriving_hash
module Digest = Core.Digest
module Doubly_linked = Core.Doubly_linked
module Either = Core.Either
module Ephemeron = Core.Ephemeron
module Equal = Core.Equal
module Error = Core.Error
module Exn = Core.Exn
module Expect_test_config = Core.Expect_test_config
module Fdeque = Core.Fdeque
module Field = Core.Field
module Filename = Core.Filename
module Float = Core.Float
module Float_with_finite_only_serialization = Core.Float_with_finite_only_serialization
module Floatable = Core.Floatable
module Fn = Core.Fn
module Formatter = Core.Formatter
module Fqueue = Core.Fqueue
module Gc = Core.Gc
module Hash = Core.Hash
module Hash_queue = Core.Hash_queue
module Hash_set = Core.Hash_set
module Hashable = Core.Hashable
module Hashtbl = Core.Hashtbl
module Hashtbl_intf = Core.Hashtbl_intf
module Heap_block = Core.Heap_block
module Hexdump = Core.Hexdump
module Hexdump_intf = Core.Hexdump_intf
module Host_and_port = Core.Host_and_port
module Identifiable = Core.Identifiable
module Immediate_option = Core.Immediate_option
module Immediate_option_intf = Core.Immediate_option_intf
module In_channel = Core.In_channel
module Indexed_container = Core.Indexed_container
module Info = Core.Info
module Int = Core.Int
module Int32 = Core.Int32
module Int63 = Core.Int63
module Int64 = Core.Int64
module Int_conversions = Core.Int_conversions
module Int_intf = Core.Int_intf
module Int_math = Core.Int_math
module Intable = Core.Intable
module Interfaces = Core.Interfaces
module Invariant = Core.Invariant
module Lazy = Core.Lazy
module Linked_queue = Core.Linked_queue
module List = Core.List
module Map = Core.Map
module Map_intf = Core.Map_intf
module Maybe_bound = Core.Maybe_bound
module Md5 = Core.Md5
module Memo = Core.Memo
module Monad = Core.Monad
module Month = Core.Month
module Mutex = Core.Mutex
module Nativeint = Core.Nativeint
module No_polymorphic_compare = Core.No_polymorphic_compare
module Nothing = Core.Nothing
module Only_in_test = Core.Only_in_test
module Option = Core.Option
module Option_array = Core.Option_array
module Optional_syntax = Core.Optional_syntax
module Optional_syntax_intf = Core.Optional_syntax_intf
module Or_error = Core.Or_error
module Ordered_collection_common = Core.Ordered_collection_common
module Ordering = Core.Ordering
module Out_channel = Core.Out_channel
module Percent = Core.Percent
module Perms = Core.Perms
module Pid = Core.Pid
module Poly = Core.Poly
module Polymorphic_compare = Core.Polymorphic_compare
module Popcount = Core.Popcount
module Pretty_printer = Core.Pretty_printer
module Printexc = Core.Printexc
module Printf = Core.Printf
module Queue = Core.Queue
module Quickcheck = Core.Quickcheck
module Quickcheck_intf = Core.Quickcheck_intf
module Quickcheckable = Core.Quickcheckable
module Random = Core.Random
module Ref = Core.Ref
module Result = Core.Result
module Robustly_comparable = Core.Robustly_comparable
module Sequence = Core.Sequence
module Set = Core.Set
module Set_intf = Core.Set_intf
module Set_once = Core.Set_once
module Sexp_maybe = Core.Sexp_maybe
module Sexp = Core.Sexp
module Sexpable = Core.Sexpable
module Sign = Core.Sign
module Signal = Core.Signal
module Sign_or_nan = Core.Sign_or_nan
module Source_code_position = Core.Source_code_position
module Splittable_random = Core.Splittable_random
module Stable_comparable = Core.Stable_comparable
module Stable_unit_test = Core.Stable_unit_test
module Stack = Core.Stack
module Staged = Core.Staged
module String = Core.String
module String_id = Core.String_id
module Stringable = Core.Stringable
module Substring = Core.Substring
module Substring_intf = Core.Substring_intf
module Sys = Core.Sys
module Thread = Core.Thread
module Time = Core.Time
module Time_ns = Core.Time_ns
module Tuple = Core.Tuple
module Tuple2 = Core.Tuple2
module Tuple3 = Core.Tuple3
module Type_equal = Core.Type_equal
module Type_immediacy = Core.Type_immediacy
module Uchar = Core.Uchar
module Uniform_array = Core.Uniform_array
module Union_find = Core.Union_find
module Unique_id = Core.Unique_id
module Unit = Core.Unit
module Unit_of_time = Core.Unit_of_time
module Univ_map = Core.Univ_map
module Unix = Core.Unix
module Validate = Core.Validate
module Validated = Core.Validated
module Variant = Core.Variant
module Weak = Core.Weak
module With_return = Core.With_return
module Word_size = Core.Word_size
module type Unique_id = Core.Unique_id
include module type of struct include Base.T end
module type T = Core.T
module type T1 = Core.T1
module type T2 = Core.T2
module type T3 = Core.T3
module type T_bin = Core.T_bin

included first so that everything else shadows it

Exceptions
val raise : exn -> 'a

Raise the given exception value

val raise_notrace : exn -> 'a

A faster version raise which does not record the backtrace.

  • since 4.02.0
val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your programs.

Comparisons
val (=) : 'a -> 'a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises Invalid_argument. Equality between cyclic data structures may not terminate.

val (<>) : 'a -> 'a -> bool

Negation of Poly.(=).

val (<) : 'a -> 'a -> bool
val (>) : 'a -> 'a -> bool
val (<=) : 'a -> 'a -> bool
val (>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with ( = ). As in the case of ( = ), mutable structures are compared by contents. Comparison between functional values raises Invalid_argument. Comparison between cyclic structures may not terminate.

val (==) : 'a -> 'a -> bool

e1 == e2 tests for physical equality of e1 and e2. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2 is true if and only if physical modification of e1 also affects e2. On non-mutable types, the behavior of ( == ) is implementation-dependent; however, it is guaranteed that e1 == e2 implies compare e1 e2 = 0.

val (!=) : 'a -> 'a -> bool

Negation of (==).

Boolean operations
val not : bool -> bool

The boolean negation.

val (&&) : bool -> bool -> bool

The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first, and if it returns false, e2 is not evaluated at all.

val (&) : bool -> bool -> bool
val (||) : bool -> bool -> bool

The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated first, and if it returns true, e2 is not evaluated at all.

val or : bool -> bool -> bool
Debugging
val __LOC__ : string

__LOC__ returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"

val __FILE__ : string

__FILE__ returns the name of the file currently being parsed by the compiler.

val __LINE__ : int

__LINE__ returns the line number at which this expression appears in the file currently being parsed by the compiler.

val __MODULE__ : string

__MODULE__ returns the module name of the file being parsed by the compiler.

val __POS__ : string * int * int * int

__POS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

val __FUNCTION__ : string

__FUNCTION__ returns the name of the current function or method, including any enclosing modules or classes.

val __LOC_OF__ : 'a -> string * 'a

__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"

val __LINE_OF__ : 'a -> int * 'a

__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which the expression expr appears in the file currently being parsed by the compiler.

val __POS_OF__ : 'a -> (string * int * int * int) * 'a

__POS_OF__ expr returns a pair (expr,loc), where loc is a tuple (file,lnum,cnum,enum) corresponding to the location at which the expression expr appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

Composition operators
val (|>) : 'a -> ( 'a -> 'b ) -> 'b

Reverse-application operator: x |> f |> g is exactly equivalent to g (f (x)).

  • since 4.01
val (@@) : ( 'a -> 'b ) -> 'a -> 'b

Application operator: g @@ f @@ x is exactly equivalent to g (f (x)).

  • since 4.01
Integer arithmetic

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.

val (~-) : int -> int

Unary negation. You can also write - e instead of ~- e.

val (~+) : int -> int

Unary addition. You can also write + e instead of ~+ e.

  • since 3.12.0
val succ : int -> int

succ x is x + 1.

val pred : int -> int

pred x is x - 1.

val (+) : int -> int -> int

Integer addition.

val (-) : int -> int -> int

Integer subtraction.

val (*) : int -> int -> int

Integer multiplication.

val (/) : int -> int -> int

Integer division. Raise Division_by_zero if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover, (- x) / y = x / (- y) = - (x / y).

val (mod) : int -> int -> int

Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x = (x / y) * y + x mod y and abs(x mod y) <= abs(y) - 1. If y = 0, x mod y raises Division_by_zero. Note that x mod y is negative only if x < 0. Raise Division_by_zero if y is zero.

val abs : int -> int

Return the absolute value of the argument. Note that this may be negative if the argument is min_int.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations
val (land) : int -> int -> int

Bitwise logical and.

val (lor) : int -> int -> int

Bitwise logical or.

val (lxor) : int -> int -> int

Bitwise logical exclusive or.

val lnot : int -> int

Bitwise logical negation.

val (lsl) : int -> int -> int

n lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val (lsr) : int -> int -> int

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless of the sign of n. The result is unspecified if m < 0 or m >= bitsize.

val (asr) : int -> int -> int

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is replicated. The result is unspecified if m < 0 or m >= bitsize.

Floating-point arithmetic

OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan ('not a number') for 0.0 /. 0.0. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity is 0.0, and any arithmetic operation with nan as argument returns nan as result.

val (~-.) : float -> float

Unary negation. You can also write -. e instead of ~-. e.

val (~+.) : float -> float

Unary addition. You can also write +. e instead of ~+. e.

  • since 3.12.0
val (+.) : float -> float -> float

Floating-point addition

val (-.) : float -> float -> float

Floating-point subtraction

val (*.) : float -> float -> float

Floating-point multiplication

val (/.) : float -> float -> float

Floating-point division.

val (**) : float -> float -> float

Exponentiation.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val expm1 : float -> float

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

  • since 3.12.0
val log1p : float -> float

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

  • since 3.12.0
val cos : float -> float

Cosine. Argument is in radians.

val sin : float -> float

Sine. Argument is in radians.

val tan : float -> float

Tangent. Argument is in radians.

val acos : float -> float

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.

val asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.

val atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

val atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.

val hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin.

  • since 4.00.0
val cosh : float -> float

Hyperbolic cosine. Argument is in radians.

val sinh : float -> float

Hyperbolic sine. Argument is in radians.

val tanh : float -> float

Hyperbolic tangent. Argument is in radians.

val ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.

val floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.

val abs_float : float -> float

abs_float f returns the absolute value of f.

val copysign : float -> float -> float

copysign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

  • since 4.00.0
val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

val float : int -> float
val float_of_int : int -> float

Convert an integer to floating-point.

val truncate : float -> int
val int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val infinity : float

Positive infinity.

val neg_infinity : float

Negative infinity.

val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.

val max_float : float

The largest positive finite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

type fpclass = Caml.fpclass =
| FP_normal(*

Normal number, none of the below

*)
| FP_subnormal(*

Number very close to 0.0, has reduced precision

*)
| FP_zero(*

Number is 0.0 or -0.0

*)
| FP_infinite(*

Number is positive or negative infinity

*)
| FP_nan(*

Not a number: result of an undefined operation

*)

The five classes of floating-point numbers, as determined by the Caml.classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

String operations

More string operations are provided in module String.

val (^) : string -> string -> string

String concatenation.

Character operations

More character operations are provided in module Char.

val int_of_char : char -> int

Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int" if the argument is outside the range 0--255.

Unit operations
val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the result of the side-effecting function f. It is equivalent to f x; (), except that the latter may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions
val string_of_bool : bool -> string

Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.

val bool_of_string : string -> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the string is not "true" or "false".

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string : string -> int

Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x or 0X), octal (if it begins with 0o or 0O), or binary (if it begins with 0b or 0B). Raise Failure "int_of_string" if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int.

val string_of_float : float -> string

Return the string representation of a floating-point number.

val float_of_string : string -> float

Convert the given string to a float. Raise Failure "float_of_string" if the given string is not a valid representation of a float.

Pair operations
val fst : ('a * 'b) -> 'a

Return the first component of a pair.

val snd : ('a * 'b) -> 'b

Return the second component of a pair.

List operations

More list operations are provided in module List.

val (@) : 'a list -> 'a list -> 'a list

List concatenation.

Input/output

Note: all input/output functions can raise Sys_error when the system calls they invoke fail.

type in_channel = Caml.in_channel

The type of input channel.

type out_channel = Caml.out_channel

The type of output channel.

val stdin : Caml.in_channel

The standard input for the process.

val stdout : Caml.out_channel

The standard output for the process.

val stderr : Caml.out_channel

The standard error output for the process.

Output functions on standard output
val print_char : char -> unit

Print a character on standard output.

val print_string : string -> unit

Print a string on standard output.

val print_bytes : bytes -> unit

Print a byte sequence on standard output.

val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

val print_endline : string -> unit

Print a string, followed by a newline character, on standard output and flush standard output.

val print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.

Output functions on standard error
val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_bytes : bytes -> unit

Print a byte sequence on standard error.

val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

Input functions on standard input
val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

val read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

val read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.

General output functions
type open_flag = Caml.open_flag =
| Open_rdonly(*

open for reading.

*)
| Open_wronly(*

open for writing.

*)
| Open_append(*

open for appending: always write at end of file.

*)
| Open_creat(*

create the file if it does not exist.

*)
| Open_trunc(*

empty the file if it already exists.

*)
| Open_excl(*

fail if Open_creat and the file already exists.

*)
| Open_binary(*

open in binary mode (no conversion).

*)
| Open_text(*

open in text mode (may perform conversions).

*)
| Open_nonblock(*

open in non-blocking mode.

*)

Opening modes for Caml.open_out_gen and Caml.open_in_gen.

val open_out : string -> Caml.out_channel

Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.

val open_out_bin : string -> Caml.out_channel

Same as Caml.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_out.

val open_out_gen : Caml.open_flag list -> int -> string -> Caml.out_channel

open_out_gen mode perm filename opens the named file for writing, as described above. The extra argument mode specify the opening mode. The extra argument perm specifies the file permissions, in case the file must be created. Caml.open_out and Caml.open_out_bin are special cases of this function.

val flush : Caml.out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.

val flush_all : unit -> unit

Flush all open output channels; ignore errors.

val output_char : Caml.out_channel -> char -> unit

Write the character on the given output channel.

val output_string : Caml.out_channel -> string -> unit

Write the string on the given output channel.

val output_bytes : Caml.out_channel -> bytes -> unit

Write the byte sequence on the given output channel.

val output : Caml.out_channel -> bytes -> int -> int -> unit

output oc buf pos len writes len characters from byte sequence buf, starting at offset pos, to the given output channel oc. Raise Invalid_argument "output" if pos and len do not designate a valid range of buf.

val output_substring : Caml.out_channel -> string -> int -> int -> unit

Same as output but take a string as argument instead of a byte sequence.

val output_byte : Caml.out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.

val output_binary_int : Caml.out_channel -> int -> unit

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Caml.input_binary_int function. The format is compatible across all machines for a given version of OCaml.

val output_value : Caml.out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Caml.input_value. See the description of module Marshal for more information. Caml.output_value is equivalent to Marshal.to_channel with an empty list of flags.

val seek_out : Caml.out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.

val pos_out : Caml.out_channel -> int

Return the current writing position for the given channel. Does not work on channels opened with the Open_append flag (returns unspecified results).

val out_channel_length : Caml.out_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.

val close_out : Caml.out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error exception when they are applied to a closed output channel, except close_out and flush, which do nothing when applied to an already closed channel. Note that close_out may raise Sys_error if the operating system signals an error when flushing or closing.

val close_out_noerr : Caml.out_channel -> unit

Same as close_out, but ignore all errors.

val set_binary_mode_out : Caml.out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output. set_binary_mode_out oc false sets the channel oc to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

General input functions
val open_in : string -> Caml.in_channel

Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.

val open_in_bin : string -> Caml.in_channel

Same as Caml.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_in.

val open_in_gen : Caml.open_flag list -> int -> string -> Caml.in_channel

open_in_gen mode perm filename opens the named file for reading, as described above. The extra arguments mode and perm specify the opening mode and file permissions. Caml.open_in and Caml.open_in_bin are special cases of this function.

val input_char : Caml.in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more characters to read.

val input_line : Caml.in_channel -> string

Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file if the end of the file is reached at the beginning of line.

val input : Caml.in_channel -> bytes -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them in byte sequence buf, starting at character number pos. It returns the actual number of characters read, between 0 and len (inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len exclusive means that not all requested len characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input must be called again to read the remaining characters, if desired. (See also Caml.really_input for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do not designate a valid range of buf.

val really_input : Caml.in_channel -> bytes -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in byte sequence buf, starting at character number pos. Raise End_of_file if the end of file is reached before len characters have been read. Raise Invalid_argument "really_input" if pos and len do not designate a valid range of buf.

val really_input_string : Caml.in_channel -> int -> string

really_input_string ic len reads len characters from channel ic and returns them in a new string. Raise End_of_file if the end of file is reached before len characters have been read.

val input_byte : Caml.in_channel -> int

Same as Caml.input_char, but return the 8-bit integer representing the character. Raise End_of_file if an end of file was reached.

val input_binary_int : Caml.in_channel -> int

Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See Caml.output_binary_int. Raise End_of_file if an end of file was reached while reading the integer.

val input_value : Caml.in_channel -> 'a

Read the representation of a structured value, as produced by Caml.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.

val seek_in : Caml.in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works only for regular files. On files of other kinds, the behavior is unspecified.

val pos_in : Caml.in_channel -> int

Return the current reading position for the given channel.

val in_channel_length : Caml.in_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.

val close_in : Caml.in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied to a closed input channel, except close_in, which does nothing when applied to an already closed channel.

val close_in_noerr : Caml.in_channel -> unit

Same as close_in, but ignore all errors.

val set_binary_mode_in : Caml.in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input. set_binary_mode_out ic false sets the channel ic to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

Operations on large files
module LargeFile = Core.LargeFile

Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), these alternate functions allow operating on files whose sizes are greater than max_int.

References
type 'a ref = 'a Caml.ref = {
mutable contents : 'a;
}

The type of references (mutable indirection cells) containing a value of type 'a.

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : 'a ref -> 'a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.

Result type

type ('a, 'b) result = ( 'a, 'b ) Caml.result =
| Ok of 'a
| Error of 'b
Operations on format strings

Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf and to print data with formatted output functions from modules Printf and Format.

Format strings are made of three kinds of entities:

  • conversions specifications, introduced by the special character '%' followed by one or more characters specifying what kind of argument to read or print,
  • formatting indications, introduced by the special character '@' followed by one or more characters specifying how to read or print the argument,
  • plain characters that are regular characters with usual lexical conventions. Plain characters specify string literals to be read in the input or printed in the output.

There is an additional lexical rule to escape the special characters '%' and '@' in format strings: if a special character follows a '%' character, it is treated as a plain character. In other words, "%%" is considered as a plain '%' and "%@" as a plain '@'.

For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf, Printf and Format.

type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ( 'a, 'b, 'c, 'd, 'e, 'f ) CamlinternalFormatBasics.format6

Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6. The two simplified types, format and format4 below are included for backward compatibility with earlier releases of OCaml.

The meaning of format string type parameters is as follows:

  • 'a is the type of the parameters of the format for formatted output functions (printf-style functions); 'a is the type of the values read by the format for formatted input functions (scanf-style functions).
  • 'b is the type of input source for formatted input functions and the type of output target for formatted output functions. For printf-style functions from module Printf, 'b is typically out_channel; for printf-style functions from module Format, 'b is typically Format.formatter; for scanf-style functions from module Scanf, 'b is typically Scanf.Scanning.in_channel.

Type argument 'b is also the type of the first argument given to user's defined printing functions for %a and %t conversions, and user's defined reading functions for %r conversion.

  • 'c is the type of the result of the %a and %t printing functions, and also the type of the argument transmitted to the first argument of kprintf-style functions or to the kscanf-style functions.
  • 'd is the type of parameters for the scanf-style functions.
  • 'e is the type of the receiver function for the scanf-style functions.
  • 'f is the final result type of a formatted input/output function invocation: for the printf-style functions, it is typically unit; for the scanf-style functions, it is typically the result type of the receiver function.
type ('a, 'b, 'c, 'd) format4 = ( 'a, 'b, 'c, 'c, 'c, 'd ) format6
type ('a, 'b, 'c) format = ( 'a, 'b, 'c, 'c ) format4
val string_of_format : ( 'a, 'b, 'c, 'd, 'e, 'f ) format6 -> string

Converts a format string into a string.

val format_of_string : ( 'a, 'b, 'c, 'd, 'e, 'f ) format6 -> ( 'a, 'b, 'c, 'd, 'e, 'f ) format6

format_of_string s returns a format string read from the string literal s. Note: format_of_string can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string function.

val (^^) : ( 'a, 'b, 'c, 'd, 'e, 'f ) format6 -> ( 'f, 'b, 'c, 'e, 'g, 'h ) format6 -> ( 'a, 'b, 'c, 'd, 'g, 'h ) format6

f1 ^^ f2 catenates format strings f1 and f2. The result is a format string that behaves as the concatenation of format strings f1 and f2: in case of formatted output, it accepts arguments from f1, then arguments from f2; in case of formatted input, it returns results from f1, then results from f2.

Program termination
val exit : int -> 'a

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all. An implicit exit 0 is performed each time a program terminates normally. An implicit exit 2 is performed if the program terminates early because of an uncaught exception.

val at_exit : ( unit -> unit ) -> unit

Register the given function to be called at program termination time. The functions registered with at_exit will be called when the program executes Caml.exit, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added with at_exit is called first.

include module type of struct include Core.Int.Replace_polymorphic_compare end
include Base.Comparisons.Infix with type t := Core.Int.t
val (>=) : Core.Int.t -> Core.Int.t -> bool
val (<=) : Core.Int.t -> Core.Int.t -> bool
val (=) : Core.Int.t -> Core.Int.t -> bool
val (>) : Core.Int.t -> Core.Int.t -> bool
val (<) : Core.Int.t -> Core.Int.t -> bool
val (<>) : Core.Int.t -> Core.Int.t -> bool
val equal : Core.Int.t -> Core.Int.t -> bool
val compare : Core.Int.t -> Core.Int.t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

include module type of struct include Base_quickcheck.Export end
val quickcheck_generator_unit : Base.unit Base_quickcheck.Generator.t
val quickcheck_generator_bool : Base.bool Base_quickcheck.Generator.t
val quickcheck_generator_char : Base.char Base_quickcheck.Generator.t
val quickcheck_generator_string : Base.string Base_quickcheck.Generator.t
val quickcheck_generator_bytes : Base.bytes Base_quickcheck.Generator.t
val quickcheck_generator_int : Base.int Base_quickcheck.Generator.t
val quickcheck_generator_int32 : Base.int32 Base_quickcheck.Generator.t
val quickcheck_generator_int64 : Base.int64 Base_quickcheck.Generator.t
val quickcheck_generator_nativeint : Base.nativeint Base_quickcheck.Generator.t
val quickcheck_generator_float : Base.float Base_quickcheck.Generator.t
val quickcheck_observer_unit : Base.unit Base_quickcheck.Observer.t
val quickcheck_observer_bool : Base.bool Base_quickcheck.Observer.t
val quickcheck_observer_char : Base.char Base_quickcheck.Observer.t
val quickcheck_observer_string : Base.string Base_quickcheck.Observer.t
val quickcheck_observer_bytes : Base.bytes Base_quickcheck.Observer.t
val quickcheck_observer_int : Base.int Base_quickcheck.Observer.t
val quickcheck_observer_int32 : Base.int32 Base_quickcheck.Observer.t
val quickcheck_observer_int64 : Base.int64 Base_quickcheck.Observer.t
val quickcheck_observer_nativeint : Base.nativeint Base_quickcheck.Observer.t
val quickcheck_observer_float : Base.float Base_quickcheck.Observer.t
val quickcheck_shrinker_unit : Base.unit Base_quickcheck.Shrinker.t
val quickcheck_shrinker_bool : Base.bool Base_quickcheck.Shrinker.t
val quickcheck_shrinker_char : Base.char Base_quickcheck.Shrinker.t
val quickcheck_shrinker_string : Base.string Base_quickcheck.Shrinker.t
val quickcheck_shrinker_bytes : Base.bytes Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int : Base.int Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int32 : Base.int32 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_int64 : Base.int64 Base_quickcheck.Shrinker.t
val quickcheck_shrinker_nativeint : Base.nativeint Base_quickcheck.Shrinker.t
val quickcheck_shrinker_float : Base.float Base_quickcheck.Shrinker.t
val quickcheck_generator_option : 'a Base_quickcheck.Generator.t -> 'a Base.option Base_quickcheck.Generator.t
val quickcheck_generator_list : 'a Base_quickcheck.Generator.t -> 'a Base.list Base_quickcheck.Generator.t
val quickcheck_generator_array : 'a Base_quickcheck.Generator.t -> 'a Base.array Base_quickcheck.Generator.t
val quickcheck_generator_ref : 'a Base_quickcheck.Generator.t -> 'a Base.ref Base_quickcheck.Generator.t
val quickcheck_generator_lazy_t : 'a Base_quickcheck.Generator.t -> 'a Base.Lazy.t Base_quickcheck.Generator.t
val quickcheck_observer_option : 'a Base_quickcheck.Observer.t -> 'a Base.option Base_quickcheck.Observer.t
val quickcheck_observer_list : 'a Base_quickcheck.Observer.t -> 'a Base.list Base_quickcheck.Observer.t
val quickcheck_observer_array : 'a Base_quickcheck.Observer.t -> 'a Base.array Base_quickcheck.Observer.t
val quickcheck_observer_ref : 'a Base_quickcheck.Observer.t -> 'a Base.ref Base_quickcheck.Observer.t
val quickcheck_observer_lazy_t : 'a Base_quickcheck.Observer.t -> 'a Base.Lazy.t Base_quickcheck.Observer.t
val quickcheck_shrinker_option : 'a Base_quickcheck.Shrinker.t -> 'a Base.option Base_quickcheck.Shrinker.t
val quickcheck_shrinker_list : 'a Base_quickcheck.Shrinker.t -> 'a Base.list Base_quickcheck.Shrinker.t
val quickcheck_shrinker_array : 'a Base_quickcheck.Shrinker.t -> 'a Base.array Base_quickcheck.Shrinker.t
val quickcheck_shrinker_ref : 'a Base_quickcheck.Shrinker.t -> 'a Base.ref Base_quickcheck.Shrinker.t
val quickcheck_shrinker_lazy_t : 'a Base_quickcheck.Shrinker.t -> 'a Base.Lazy.t Base_quickcheck.Shrinker.t
val (|!) : 'a -> ( 'a -> 'b ) -> 'b
include module type of struct include Core__.Either.Export end
type (!'f, !'s) _either =
| First of 'f
| Second of 's
type bigstring = Sexplib.Conv.bigstring
val sexp_of_bigstring : bigstring -> Sexplib0.Sexp.t
val bigstring_of_sexp : Sexplib0.Sexp.t -> bigstring
type mat = Sexplib.Conv.mat
val sexp_of_mat : mat -> Sexplib0.Sexp.t
val mat_of_sexp : Sexplib0.Sexp.t -> mat
type vec = Sexplib.Conv.vec
val sexp_of_vec : vec -> Sexplib0.Sexp.t
val vec_of_sexp : Sexplib0.Sexp.t -> vec
val sexp_of_opaque : _ -> Base.Sexp.t
val opaque_of_sexp : Base.Sexp.t -> _
val sexp_of_pair : ( 'a -> Base.Sexp.t ) -> ( 'b -> Base.Sexp.t ) -> ('a * 'b) -> Base.Sexp.t
val pair_of_sexp : ( Base.Sexp.t -> 'a ) -> ( Base.Sexp.t -> 'b ) -> Base.Sexp.t -> 'a * 'b
exception Of_sexp_error of Base.Exn.t * Base.Sexp.t
val of_sexp_error : Base.String.t -> Base.Sexp.t -> _
val of_sexp_error_exn : Base.Exn.t -> Base.Sexp.t -> _
include module type of struct include Core.Interfaces end
module type Applicative = Core.Applicative
module type Binable = Core.Binable
module type Comparable = Core.Comparable
module type Comparable_binable = Core.Comparable_binable
module type Floatable = Core.Floatable
module type Hashable = Core.Hashable
module type Hashable_binable = Core.Hashable_binable
module type Identifiable = Core.Identifiable
module type Infix_comparators = Core.Infix_comparators
module type Intable = Core.Intable
module type Monad = Core.Monad
module type Quickcheckable = Core.Quickcheckable
module type Robustly_comparable = Core.Robustly_comparable
module type Sexpable = Core.Sexpable
module type Stable = Core.Stable
module type Stable_int63able = Core.Stable_int63able
module type Stable_without_comparator = Core.Stable_without_comparator
module type Stable1 = Core.Stable1
module type Stable2 = Core.Stable2
module type Stable3 = Core.Stable3
module type Stable4 = Core.Stable4
module type Stringable = Core.Stringable
module type Unit = Core.Unit
include module type of struct include Core.List.Infix end
val (@) : 'a Core.List.{t}3 -> 'a Core.List.{t}3 -> 'a Core.List.{t}3
type never_returns = Core.Nothing.t
val sexp_of_never_returns : never_returns -> Sexplib0.Sexp.t
val never_returns : never_returns -> _
include module type of struct include Core.Ordering.Export end
type _ordering = Core.Ordering.t =
| Less
| Equal
| Greater
include module type of struct include Core.Perms.Export end
type read = Core.Perms.Read.t
val bin_shape_read : Bin_prot.Shape.t
val bin_size_read : read Bin_prot.Size.sizer
val bin_write_read : read Bin_prot.Write.writer
val bin_writer_read : read Bin_prot.Type_class.writer
val bin_read_read : read Bin_prot.Read.reader
val __bin_read_read__ : ( Base.Int.t -> read ) Bin_prot.Read.reader
val bin_reader_read : read Bin_prot.Type_class.reader
val compare_read : read -> read -> Base.Int.t
val hash_fold_read : Base.Hash.state -> read -> Base.Hash.state
val hash_read : read -> Base.Hash.hash_value
val sexp_of_read : read -> Sexplib0.Sexp.t
val read_of_sexp : Sexplib0.Sexp.t -> read
type write = Core.Perms.Write.t

We don't expose bin_io for write due to a naming conflict with the functions exported by bin_io for read_write. If you want bin_io for write, use Write.t.

val compare_write : write -> write -> Base.Int.t
val hash_fold_write : Base.Hash.state -> write -> Base.Hash.state
val hash_write : write -> Base.Hash.hash_value
val sexp_of_write : write -> Sexplib0.Sexp.t
val write_of_sexp : Sexplib0.Sexp.t -> write
type immutable = Core.Perms.Immutable.t
val bin_shape_immutable : Bin_prot.Shape.t
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : ( Base.Int.t -> immutable ) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_immutable : immutable Bin_prot.Type_class.t
val compare_immutable : immutable -> immutable -> Base.Int.t
val hash_fold_immutable : Base.Hash.state -> immutable -> Base.Hash.state
val hash_immutable : immutable -> Base.Hash.hash_value
val sexp_of_immutable : immutable -> Sexplib0.Sexp.t
val immutable_of_sexp : Sexplib0.Sexp.t -> immutable
type read_write = Core.Perms.Read_write.t
val bin_shape_read_write : Bin_prot.Shape.t
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : ( Base.Int.t -> read_write ) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_read_write : read_write Bin_prot.Type_class.t
val compare_read_write : read_write -> read_write -> Base.Int.t
val hash_fold_read_write : Base.Hash.state -> read_write -> Base.Hash.state
val hash_read_write : read_write -> Base.Hash.hash_value
val sexp_of_read_write : read_write -> Sexplib0.Sexp.t
val read_write_of_sexp : Sexplib0.Sexp.t -> read_write
type 'a perms = 'a Core.Perms.Upper_bound.t
val bin_shape_perms : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_perms : 'a Bin_prot.Size.sizer -> 'a perms Bin_prot.Size.sizer
val bin_write_perms : 'a Bin_prot.Write.writer -> 'a perms Bin_prot.Write.writer
val bin_read_perms : 'a Bin_prot.Read.reader -> 'a perms Bin_prot.Read.reader
val __bin_read_perms__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a perms ) Bin_prot.Read.reader
val compare_perms : ( 'a -> 'a -> Base.Int.t ) -> 'a perms -> 'a perms -> Base.Int.t
val hash_fold_perms : ( Base.Hash.state -> 'a -> Base.Hash.state ) -> Base.Hash.state -> 'a perms -> Base.Hash.state
val sexp_of_perms : ( 'a -> Sexplib0.Sexp.t ) -> 'a perms -> Sexplib0.Sexp.t
val perms_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a perms
include module type of struct include Core.Result.Export end
type ('ok, 'err) _result = ( 'ok, 'err ) Core.Result.t =
| Ok of 'ok
| Error of 'err
val is_ok : ( _, _ ) Core.Result.t -> bool
val is_error : ( _, _ ) Core.Result.t -> bool
type -'a return = private 'a Base.With_return.return = {
return : 'b. 'a -> 'b;
}
exception Bug of Base.String.t
exception C_malloc_exn of Base.Int.t * Base.Int.t

Raised if malloc in C bindings fail (errno * size).

exception Finally of Base.Exn.t * Base.Exn.t
val fst3 : ('a * 'b * 'c) -> 'd
val snd3 : ('a * 'b * 'c) -> 'd
val trd3 : ('a * 'b * 'c) -> 'd
val uw : 'a Base.Option.t -> 'a
val (//) : Core.Int.t -> Core.Int.t -> float
val (==>) : bool -> bool -> bool
val bprintf : Base__.Import0.Caml.Buffer.t -> ( 'a, Base__.Import0.Caml.Buffer.t, unit ) Stdlib.format -> 'a
val const : 'a -> 'b -> 'a
val eprintf : ( 'a, Stdlib.out_channel, Base.Unit.t ) Stdlib.format -> 'a
val error : ?here:Base__.Import.Caml.Lexing.position -> ?strict:unit -> string -> 'a -> ( 'a -> Base.Sexp.t ) -> 'b Core.Or_error.t
val error_s : Base.Sexp.t -> 'a Core.Or_error.t
val failwithf : ( 'a, unit, string, unit -> 'b ) Stdlib.format4 -> 'a
val failwithp : ?strict:Base.Unit.t -> Core.Source_code_position.t -> Base.String.t -> 'a -> ( 'a -> Core.Sexp.t ) -> _
val failwiths : ?strict:Base.Unit.t -> here:Stdlib.Lexing.position -> Base.String.t -> 'a -> ( 'a -> Base.Sexp.t ) -> 'b
val force : 'a Base.Lazy.t -> 'a
val fprintf : Stdlib.out_channel -> ( 'a, Stdlib.out_channel, Base.Unit.t ) Stdlib.format -> 'a
val ident : 'a -> 'a
val invalid_argf : ( 'a, unit, string, unit -> 'b ) Stdlib.format4 -> 'a
val ifprintf : 'a -> ( 'b, 'a, 'c, unit ) Stdlib.format4 -> 'b
val is_none : 'a option -> bool
val is_some : 'a option -> bool
val ksprintf : ( string -> 'a ) -> ( 'b, unit, string, 'a ) Stdlib.format4 -> 'b
val ok_exn : 'a Core.Or_error.t -> 'a
val phys_equal : 'a -> 'a -> bool
val phys_same : 'a -> 'b -> bool
val print_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val eprint_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val printf : ( 'a, Stdlib.out_channel, Base.Unit.t ) Stdlib.format -> 'a
val protect : f:( unit -> 'a ) -> finally:( unit -> unit ) -> 'a
val protectx : f:( 'a -> 'b ) -> 'a -> finally:( 'a -> unit ) -> 'b
val raise_s : Base.Sexp.t -> 'a
val round : ?dir:[ `Down | `Nearest | `Up | `Zero ] -> float -> float
val (**.) : float -> float -> float
val (%.) : float -> float -> float
val sprintf : ( 'a, unit, string ) Stdlib.format -> 'a
val stage : 'a -> 'a Base.Staged.t
val unstage : 'a Base.Staged.t -> 'a
val with_return : ( 'a Base.With_return.return -> 'a ) -> 'a
val with_return_option : ( 'a Base.With_return.return -> unit ) -> 'a option
include module type of struct include Typerep_lib.Std_internal end
module Typerep = Core.Typerep

runtime type representations

val typerep_of_int63 : Base.Int63.t Typerep.t
type tuple0 = Core.tuple0
val value_tuple0 : tuple0
val typerep_of_function : 'a Typerep.t -> 'b Typerep.t -> ( 'a -> 'b ) Typerep.t
val typerep_of_tuple0 : tuple0 Typerep.t
val typerep_of_tuple2 : 'a Typerep.t -> 'b Typerep.t -> ('a * 'b) Typerep.t
val typerep_of_tuple3 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> ('a * 'b * 'c) Typerep.t
val typerep_of_tuple4 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> ('a * 'b * 'c * 'd) Typerep.t
val typerep_of_tuple5 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> 'e Typerep.t -> ('a * 'b * 'c * 'd * 'e) Typerep.t
val typename_of_int63 : Base.Int63.t Typerep_lib.Typename.t
val typename_of_function : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ( 'a -> 'b ) Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val typename_of_tuple2 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a * 'b) Typerep_lib.Typename.t
val typename_of_tuple3 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> ('a * 'b * 'c) Typerep_lib.Typename.t
val bin_shape_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val __bin_read_array__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a Base.Array.t ) Bin_prot.Read.reader
val compare_array : ( 'a -> 'a -> Base.Int.t ) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Int.t
val equal_array : ( 'a -> 'a -> Base.Bool.t ) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Bool.t
val sexp_of_array : ( 'a -> Sexplib0.Sexp.t ) -> 'a Base.Array.t -> Sexplib0.Sexp.t
val array_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a Base.Array.t
val bin_shape_bool : Bin_prot.Shape.t
val bin_size_bool : Base.Bool.t Bin_prot.Size.sizer
val bin_write_bool : Base.Bool.t Bin_prot.Write.writer
val bin_read_bool : Base.Bool.t Bin_prot.Read.reader
val __bin_read_bool__ : ( Base.Int.t -> Base.Bool.t ) Bin_prot.Read.reader
val compare_bool : Base.Bool.t -> Base.Bool.t -> Base.Int.t
val equal_bool : Base.Bool.t -> Base.Bool.t -> Base.Bool.t
val hash_fold_bool : Base.Hash.state -> Base.Bool.t -> Base.Hash.state
val sexp_of_bool : Base.Bool.t -> Sexplib0.Sexp.t
val bool_of_sexp : Sexplib0.Sexp.t -> Base.Bool.t
val bool_sexp_grammar : Base.Bool.t Sexplib0.Sexp_grammar.t
val bin_shape_char : Bin_prot.Shape.t
val bin_size_char : Base.Char.t Bin_prot.Size.sizer
val bin_write_char : Base.Char.t Bin_prot.Write.writer
val bin_read_char : Base.Char.t Bin_prot.Read.reader
val __bin_read_char__ : ( Base.Int.t -> Base.Char.t ) Bin_prot.Read.reader
val compare_char : Base.Char.t -> Base.Char.t -> Base.Int.t
val equal_char : Base.Char.t -> Base.Char.t -> Base.Bool.t
val hash_fold_char : Base.Hash.state -> Base.Char.t -> Base.Hash.state
val sexp_of_char : Base.Char.t -> Sexplib0.Sexp.t
val char_of_sexp : Sexplib0.Sexp.t -> Base.Char.t
val char_sexp_grammar : Base.Char.t Sexplib0.Sexp_grammar.t
val bin_shape_float : Bin_prot.Shape.t
val bin_size_float : Base.Float.t Bin_prot.Size.sizer
val bin_write_float : Base.Float.t Bin_prot.Write.writer
val bin_read_float : Base.Float.t Bin_prot.Read.reader
val __bin_read_float__ : ( Base.Int.t -> Base.Float.t ) Bin_prot.Read.reader
val compare_float : Base.Float.t -> Base.Float.t -> Base.Int.t
val equal_float : Base.Float.t -> Base.Float.t -> Base.Bool.t
val hash_fold_float : Base.Hash.state -> Base.Float.t -> Base.Hash.state
val sexp_of_float : Base.Float.t -> Sexplib0.Sexp.t
val float_of_sexp : Sexplib0.Sexp.t -> Base.Float.t
val float_sexp_grammar : Base.Float.t Sexplib0.Sexp_grammar.t
val bin_shape_int : Bin_prot.Shape.t
val bin_size_int : Base.Int.t Bin_prot.Size.sizer
val bin_write_int : Base.Int.t Bin_prot.Write.writer
val bin_read_int : Base.Int.t Bin_prot.Read.reader
val __bin_read_int__ : ( Base.Int.t -> Base.Int.t ) Bin_prot.Read.reader
val compare_int : Base.Int.t -> Base.Int.t -> Base.Int.t
val equal_int : Base.Int.t -> Base.Int.t -> Base.Bool.t
val hash_fold_int : Base.Hash.state -> Base.Int.t -> Base.Hash.state
val sexp_of_int : Base.Int.t -> Sexplib0.Sexp.t
val int_of_sexp : Sexplib0.Sexp.t -> Base.Int.t
val int_sexp_grammar : Base.Int.t Sexplib0.Sexp_grammar.t
val bin_shape_int32 : Bin_prot.Shape.t
val bin_size_int32 : Base.Int32.t Bin_prot.Size.sizer
val bin_write_int32 : Base.Int32.t Bin_prot.Write.writer
val bin_read_int32 : Base.Int32.t Bin_prot.Read.reader
val __bin_read_int32__ : ( Base.Int.t -> Base.Int32.t ) Bin_prot.Read.reader
val compare_int32 : Base.Int32.t -> Base.Int32.t -> Base.Int.t
val equal_int32 : Base.Int32.t -> Base.Int32.t -> Base.Bool.t
val hash_fold_int32 : Base.Hash.state -> Base.Int32.t -> Base.Hash.state
val sexp_of_int32 : Base.Int32.t -> Sexplib0.Sexp.t
val int32_of_sexp : Sexplib0.Sexp.t -> Base.Int32.t
val int32_sexp_grammar : Base.Int32.t Sexplib0.Sexp_grammar.t
val bin_shape_int64 : Bin_prot.Shape.t
val bin_size_int64 : Base.Int64.t Bin_prot.Size.sizer
val bin_write_int64 : Base.Int64.t Bin_prot.Write.writer
val bin_read_int64 : Base.Int64.t Bin_prot.Read.reader
val __bin_read_int64__ : ( Base.Int.t -> Base.Int64.t ) Bin_prot.Read.reader
val compare_int64 : Base.Int64.t -> Base.Int64.t -> Base.Int.t
val equal_int64 : Base.Int64.t -> Base.Int64.t -> Base.Bool.t
val hash_fold_int64 : Base.Hash.state -> Base.Int64.t -> Base.Hash.state
val sexp_of_int64 : Base.Int64.t -> Sexplib0.Sexp.t
val int64_of_sexp : Sexplib0.Sexp.t -> Base.Int64.t
val int64_sexp_grammar : Base.Int64.t Sexplib0.Sexp_grammar.t
val bin_shape_lazy_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_lazy_t : 'a Bin_prot.Size.sizer -> 'a lazy_t Bin_prot.Size.sizer
val bin_write_lazy_t : 'a Bin_prot.Write.writer -> 'a lazy_t Bin_prot.Write.writer
val bin_writer_lazy_t : 'a Bin_prot.Type_class.writer -> 'a lazy_t Bin_prot.Type_class.writer
val bin_read_lazy_t : 'a Bin_prot.Read.reader -> 'a lazy_t Bin_prot.Read.reader
val __bin_read_lazy_t__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a lazy_t ) Bin_prot.Read.reader
val bin_reader_lazy_t : 'a Bin_prot.Type_class.reader -> 'a lazy_t Bin_prot.Type_class.reader
val bin_lazy_t : 'a Bin_prot.Type_class.t -> 'a lazy_t Bin_prot.Type_class.t
val compare_lazy_t : ( 'a -> 'a -> Base.Int.t ) -> 'a lazy_t -> 'a lazy_t -> Base.Int.t
val hash_fold_lazy_t : ( Base.Hash.state -> 'a -> Base.Hash.state ) -> Base.Hash.state -> 'a lazy_t -> Base.Hash.state
val sexp_of_lazy_t : ( 'a -> Sexplib0.Sexp.t ) -> 'a lazy_t -> Sexplib0.Sexp.t
val lazy_t_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a lazy_t
val lazy_t_sexp_grammar : 'a Sexplib0.Sexp_grammar.t -> 'a lazy_t Sexplib0.Sexp_grammar.t
val typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t -> 'a lazy_t Typerep_lib.Std.Typerep.t
val typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t -> 'a lazy_t Typerep_lib.Std.Typename.t
val bin_shape_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val __bin_read_list__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a Base.List.t ) Bin_prot.Read.reader
val compare_list : ( 'a -> 'a -> Base.Int.t ) -> 'a Base.List.t -> 'a Base.List.t -> Base.Int.t
val equal_list : ( 'a -> 'a -> Base.Bool.t ) -> 'a Base.List.t -> 'a Base.List.t -> Base.Bool.t
val hash_fold_list : ( Base.Hash.state -> 'a -> Base.Hash.state ) -> Base.Hash.state -> 'a Base.List.t -> Base.Hash.state
val sexp_of_list : ( 'a -> Sexplib0.Sexp.t ) -> 'a Base.List.t -> Sexplib0.Sexp.t
val list_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a Base.List.t
val bin_shape_nativeint : Bin_prot.Shape.t
val bin_size_nativeint : Base.Nativeint.t Bin_prot.Size.sizer
val bin_write_nativeint : Base.Nativeint.t Bin_prot.Write.writer
val bin_writer_nativeint : Base.Nativeint.t Bin_prot.Type_class.writer
val bin_read_nativeint : Base.Nativeint.t Bin_prot.Read.reader
val __bin_read_nativeint__ : ( Base.Int.t -> Base.Nativeint.t ) Bin_prot.Read.reader
val bin_reader_nativeint : Base.Nativeint.t Bin_prot.Type_class.reader
val compare_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Int.t
val equal_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Bool.t
val hash_fold_nativeint : Base.Hash.state -> Base.Nativeint.t -> Base.Hash.state
val hash_nativeint : Base.Nativeint.t -> Base.Hash.hash_value
val sexp_of_nativeint : Base.Nativeint.t -> Sexplib0.Sexp.t
val nativeint_of_sexp : Sexplib0.Sexp.t -> Base.Nativeint.t
val nativeint_sexp_grammar : Base.Nativeint.t Sexplib0.Sexp_grammar.t
val typerep_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typerep.t
val typename_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typename.t
val bin_shape_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val __bin_read_option__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a Base.Option.t ) Bin_prot.Read.reader
val compare_option : ( 'a -> 'a -> Base.Int.t ) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Int.t
val equal_option : ( 'a -> 'a -> Base.Bool.t ) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Bool.t
val hash_fold_option : ( Base.Hash.state -> 'a -> Base.Hash.state ) -> Base.Hash.state -> 'a Base.Option.t -> Base.Hash.state
val sexp_of_option : ( 'a -> Sexplib0.Sexp.t ) -> 'a Base.Option.t -> Sexplib0.Sexp.t
val option_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a Base.Option.t
val bin_shape_string : Bin_prot.Shape.t
val bin_size_string : Base.String.t Bin_prot.Size.sizer
val bin_write_string : Base.String.t Bin_prot.Write.writer
val bin_read_string : Base.String.t Bin_prot.Read.reader
val __bin_read_string__ : ( Base.Int.t -> Base.String.t ) Bin_prot.Read.reader
val compare_string : Base.String.t -> Base.String.t -> Base.Int.t
val equal_string : Base.String.t -> Base.String.t -> Base.Bool.t
val hash_fold_string : Base.Hash.state -> Base.String.t -> Base.Hash.state
val hash_string : Base.String.t -> Base.Hash.hash_value
val sexp_of_string : Base.String.t -> Sexplib0.Sexp.t
val string_of_sexp : Sexplib0.Sexp.t -> Base.String.t
val string_sexp_grammar : Base.String.t Sexplib0.Sexp_grammar.t
val typename_of_string : Base.String.t Typerep_lib.Std.Typename.t
val bin_shape_bytes : Bin_prot.Shape.t
val bin_size_bytes : Base.Bytes.t Bin_prot.Size.sizer
val bin_write_bytes : Base.Bytes.t Bin_prot.Write.writer
val bin_read_bytes : Base.Bytes.t Bin_prot.Read.reader
val __bin_read_bytes__ : ( Base.Int.t -> Base.Bytes.t ) Bin_prot.Read.reader
val compare_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Int.t
val equal_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Bool.t
val sexp_of_bytes : Base.Bytes.t -> Sexplib0.Sexp.t
val bytes_of_sexp : Sexplib0.Sexp.t -> Base.Bytes.t
val bytes_sexp_grammar : Base.Bytes.t Sexplib0.Sexp_grammar.t
val bin_shape_ref : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_ref : 'a Bin_prot.Size.sizer -> 'a ref Bin_prot.Size.sizer
val bin_write_ref : 'a Bin_prot.Write.writer -> 'a ref Bin_prot.Write.writer
val bin_read_ref : 'a Bin_prot.Read.reader -> 'a ref Bin_prot.Read.reader
val __bin_read_ref__ : 'a Bin_prot.Read.reader -> ( Base.Int.t -> 'a ref ) Bin_prot.Read.reader
val compare_ref : ( 'a -> 'a -> Base.Int.t ) -> 'a ref -> 'a ref -> Base.Int.t
val equal_ref : ( 'a -> 'a -> Base.Bool.t ) -> 'a ref -> 'a ref -> Base.Bool.t
val sexp_of_ref : ( 'a -> Sexplib0.Sexp.t ) -> 'a ref -> Sexplib0.Sexp.t
val ref_of_sexp : ( Sexplib0.Sexp.t -> 'a ) -> Sexplib0.Sexp.t -> 'a ref
val ref_sexp_grammar : 'a Sexplib0.Sexp_grammar.t -> 'a ref Sexplib0.Sexp_grammar.t
val bin_shape_unit : Bin_prot.Shape.t
val bin_size_unit : Base.Unit.t Bin_prot.Size.sizer
val bin_write_unit : Base.Unit.t Bin_prot.Write.writer
val bin_read_unit : Base.Unit.t Bin_prot.Read.reader
val __bin_read_unit__ : ( Base.Int.t -> Base.Unit.t ) Bin_prot.Read.reader
val compare_unit : Base.Unit.t -> Base.Unit.t -> Base.Int.t
val equal_unit : Base.Unit.t -> Base.Unit.t -> Base.Bool.t
val hash_fold_unit : Base.Hash.state -> Base.Unit.t -> Base.Hash.state
val sexp_of_unit : Base.Unit.t -> Sexplib0.Sexp.t
val unit_of_sexp : Sexplib0.Sexp.t -> Base.Unit.t
val unit_sexp_grammar : Base.Unit.t Sexplib0.Sexp_grammar.t
type float_array = Base.Float.t Base.Array.t
val bin_shape_float_array : Bin_prot.Shape.t
val bin_size_float_array : float_array Bin_prot.Size.sizer
val bin_write_float_array : float_array Bin_prot.Write.writer
val bin_writer_float_array : float_array Bin_prot.Type_class.writer
val bin_read_float_array : float_array Bin_prot.Read.reader
val __bin_read_float_array__ : ( Base.Int.t -> float_array ) Bin_prot.Read.reader
val bin_reader_float_array : float_array Bin_prot.Type_class.reader
val bin_float_array : float_array Bin_prot.Type_class.t
val compare_float_array : float_array -> float_array -> Base.Int.t
val sexp_of_float_array : float_array -> Sexplib0.Sexp.t
val float_array_of_sexp : Sexplib0.Sexp.t -> float_array
val float_array_sexp_grammar : float_array Sexplib0.Sexp_grammar.t
val typerep_of_float_array : float_array Typerep_lib.Std.Typerep.t
val typename_of_float_array : float_array Typerep_lib.Std.Typename.t
val sexp_of_exn : Base.Exn.t -> Sexplib0.Sexp.t
exception Not_found
exception Not_found_s of Sexplib0.Sexp.t

Top-level values

type 'a _maybe_bound = 'a Maybe_bound.t =
| Incl of 'a
| Excl of 'a
| Unbounded
val am_running_inline_test : bool
val am_running_test : bool
val does_raise : ( unit -> 'a ) -> bool
module Core_private = Core.Core_private

To be used in implementing Core, but not by end users.

module Core_kernel_private = Core.Core_kernel_private