Core greatly expands the functionality available in Base while still remaining platform-agnostic. Core changes more frequently (i.e., is less stable) than Base.
Some modules are mere extensions of their counterparts in Base, usually adding generic functionality by including functors that make them binable, comparable, sexpable, blitable, etc. The bulk of Core, though, is modules providing entirely new functionality.
module Applicative : sig ... end
INRIA's original command-line parsing library.
module Array : sig ... end
Fixed-length, mutable vector of elements with O(1) get
and set
operations.
module Avltree : sig ... end
module Backtrace : sig ... end
Extensible string buffers based on Bigstrings.
String type based on Bigarray
, for use in I/O and C-bindings.
Substring type based on Bigarray
, for use in I/O and C-bindings
module Binary_search : sig ... end
This module extends the Base.Binary_searchable
module.
module Blang : sig ... end
module Blit : sig ... end
This module extends Base.Blit
.
module Bool : sig ... end
This module extends Base.Bool
.
Bounded_index
creates unique index types with explicit bounds and human-readable labels. "(thing 2 of 0 to 4)" refers to a 0-based index for the third element of five with the label "thing", whereas a 1-based index for the second element of twelve with the label "item" renders as "(item 2 of 1 to 12)", even though both represent the index 2.
module Buffer = Base.Buffer
Conversions between units of measure that are based on bytes (like kilobytes, megabytes, gigabytes, and words).
module Bytes : sig ... end
This module extends Base.Bytes
.
module Char : sig ... end
This module extends Base.Char
, adding Identifiable
for making char identifiers and Quickcheckable
to facilitate automated testing with pseudorandom data.
Comparable extends Base.Comparable
and provides functions for comparing like types.
Extends Base.Comparator
, providing a type-indexed value that allows you to compare values of that type.
module Comparisons : sig ... end
Provides generic signatures for container data structures.
This module extends Base.Container
.
module Continue_or_stop : sig ... end
module Date : sig ... end
Provides a variant type for days of the week (Mon
, Tue
, etc.) and convenience functions for converting these days into other formats, like sexp or string or ISO 8601 weekday number.
module Debug : sig ... end
Utilities for printing debug messages.
module Deque : sig ... end
A double-ended queue that can shrink and expand on both ends.
Generates hash functions from type expressions and definitions.
This module extends Base.Either
.
module Ephemeron = Stdlib.Ephemeron
module Equal : sig ... end
module Error : sig ... end
This module extends Base.Error
with bin_io
.
A simple polymorphic functional double-ended queue. Use this if you need a queue-like data structure that provides enqueue and dequeue accessors on both ends. For strictly first-in, first-out access, see Fqueue
.
module Field : sig ... end
module Float : sig ... end
An alias to the Float.t
type that causes the sexp and bin-io serializers to fail when provided with nan
or infinity
.
module Floatable : sig ... end
A simple polymorphic functional queue. Use this data structure for strictly first-in, first-out access to a sequence of values. For a similar data structure with enqueue and dequeue accessors on both ends of a sequence, see Core.Fdeque
.
This is a wrapper around INRIA's standard Gc
module. Provides memory management control and statistics, and finalized values.
module Hash : sig ... end
Hashtbl is a reimplementation of the standard MoreLabels.Hashtbl
. Its worst case time complexity is O(log(N)) for lookups and additions, unlike the standard MoreLabels.Hashtbl
, which is O(N).
A functor for displaying a type as a sequence of ASCII characters printed in hexadecimal.
Type for the commonly-used notion of host and port in networking.
A non-allocating alternative to the standard Option type.
module In_channel : sig ... end
module Info : sig ... end
This module extends Base.Info
, which provides a type for info-level debug messages.
This module extends Base.Int
.
module Int32 : sig ... end
This module extends Base.Int32
.
module Int63 : sig ... end
This module extends Base.Int63
.
module Int64 : sig ... end
This module extends Base.Int64
.
module Int_conversions : sig ... end
This module extends Base.Int_intf
.
module Int_math : sig ... end
module Intable : sig ... end
Various interface exports.
module Invariant : sig ... end
module Lazy : sig ... end
This module extends Base.Lazy
.
This module extends the Base.Linked_queue
module with bin_io support. As a reminder, the Base.Linked_queue
module is a wrapper around OCaml's standard Queue
module that follows Base idioms and adds some functions.
module List : sig ... end
This module extends Base.List
with bin_io and quickcheck.
Map
is a functional data structure (balanced binary tree) implementing finite maps over a totally-ordered domain, called a "key".
This module defines interfaces used in Map
. See those docs for a description of the design.
This module extends Base.Maybe_bound
with bin_io and with compare functions in the form of As_lower_bound
and As_upper_bound
modules.
This module implements the MD5
message-digest algorithm as described IETF RFC 1321. t
is the result type and val digest_string : string -> t
is the implementation of the algorithm itself.
module Memo : sig ... end
Memoization of OCaml functions of a single argument.
module Monad : sig ... end
module Month : sig ... end
Provides a variant type for representing months (e.g., Jan
, Feb
, or Nov
) and functions for converting them to other formats (like an int).
module Mutex : sig ... end
This module extends Base.Nativeint
.
Open this in modules where you don't want to accidentally use polymorphic comparison. Then, use Poly.(<)
, for example, where needed.
This module extends Base.Nothing
.
This module can be used to safely expose functions and values in signatures that should only be used in unit tests.
This module extends Base.Option
with bin_io, quickcheck, and support for ppx_optional.
This module extends Base.Option_array
with bin_io.
Interfaces for use with the match%optional
syntax, provided by ppx_optional
.
This module extends Base.Or_error
with bin_io.
This module extends Base.Ordered_collection_common
.
Extends Base.Ordering
, intended to make code that matches on the result of a comparison more concise and easier to read.
module Out_channel : sig ... end
A scale factor, not bounded between 0% and 100%, represented as a float.
module Perms : sig ... end
These types are intended to be used as phantom types encoding the permissions on a given type.
module Poly : sig ... end
module Popcount = Base.Popcount
module Pretty_printer : sig ... end
This module is here to ensure that we don't use the functions in Caml.Printexc
inadvertently.
module Queue : sig ... end
This module extends Base.Queue
with bin_io.
Quickcheck is a library that uses predicate-based tests and pseudo-random inputs to automate testing.
module Random = Base.Random
This module extends Base.Ref
.
This module extends Base.Result
.
This interface compares float-like objects with a small tolerance.
This module extends Base.Sequence
with bin_io.
This module defines the Set
module for Core
. Functions that construct a set take as an argument the comparator for the element type.
This module defines interfaces used in Set
. See the Map
docs for a description of the design.
A 'a Set_once.t
is like an 'a option ref
that can only be set once. A Set_once.t
starts out as None
, the first set
transitions it to Some
, and subsequent set
s fail.
module Sexp : sig ... end
Code for managing s-expressions.
This module extends Base.Sexpable
.
module Sign : sig ... end
This module extends Base.Sign
with bin_io.
This module extends Base.Sign_or_nan
with bin_io.
This module extends Base.Source_code_position
.
The tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.
module Stack : sig ... end
module Staged = Base.Staged
This module extends Base.String
.
Like Identifiable
, but with t = private string
and stable modules.
module Stringable : sig ... end
A substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.
module Tuple : sig ... end
Functors and signatures for dealing with modules for tuples.
This module extends Base.Type_equal
.
Witnesses that express whether a type's values are always, sometimes, or never immediate.
module Uchar : sig ... end
This module extends Base.Uniform_array
with bin_io.
Imperative data structure for representing disjoint sets.
Functors for creating modules that mint unique identifiers.
module Unit : sig ... end
Module for the type unit
, extended from Base.Unit
. This is mostly useful for building functor arguments.
Represents a unit of time, e.g., that used by Time.Span.to_string_hum
. Comparison respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.
module Unix : sig ... end
module Variant : sig ... end
module Weak = Stdlib.Weak
module With_return : sig ... end
module Word_size : sig ... end
include module type of struct include Base.T end
module type T = sig ... end
module type T1 = sig ... end
module type T2 = sig ... end
module type T3 = sig ... end
module type T_bin = sig ... end
include
d first so that everything else shadows it
Exceptions
Raise the given exception value
val raise_notrace : exn -> 'a
A faster version raise
which does not record the backtrace.
val invalid_arg : string -> 'a
Raise exception Invalid_argument
with the given string.
val failwith : string -> 'a
Raise exception Failure
with the given string.
The Exit
exception is not raised by any library function. It is provided for use in your programs.
Comparisons
val (==) : 'a -> 'a -> bool
e1 == e2
tests for physical equality of e1
and e2
. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2
is true if and only if physical modification of e1
also affects e2
. On non-mutable types, the behavior of ( == )
is implementation-dependent; however, it is guaranteed that e1 == e2
implies compare e1 e2 = 0
.
val (!=) : 'a -> 'a -> bool
Boolean operations
val (&&) : bool -> bool -> bool
The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2
, e1
is evaluated first, and if it returns false
, e2
is not evaluated at all.
val (||) : bool -> bool -> bool
The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2
, e1
is evaluated first, and if it returns true
, e2
is not evaluated at all.
Debugging
__LOC__
returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
__FILE__
returns the name of the file currently being parsed by the compiler.
__LINE__
returns the line number at which this expression appears in the file currently being parsed by the compiler.
__MODULE__
returns the module name of the file being parsed by the compiler.
val __POS__ : string * int * int * int
__POS__
returns a tuple (file,lnum,cnum,enum)
, corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file
is the current filename, lnum
the line number, cnum
the character position in the line and enum
the last character position in the line.
val __FUNCTION__ : string
__FUNCTION__
returns the name of the current function or method, including any enclosing modules or classes.
val __LOC_OF__ : 'a -> string * 'a
__LOC_OF__ expr
returns a pair (loc, expr)
where loc
is the location of expr
in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"
val __LINE_OF__ : 'a -> int * 'a
__LINE_OF__ expr
returns a pair (line, expr)
, where line
is the line number at which the expression expr
appears in the file currently being parsed by the compiler.
val __POS_OF__ : 'a -> (string * int * int * int) * 'a
__POS_OF__ expr
returns a pair (expr,loc)
, where loc
is a tuple (file,lnum,cnum,enum)
corresponding to the location at which the expression expr
appears in the file currently being parsed by the compiler. file
is the current filename, lnum
the line number, cnum
the character position in the line and enum
the last character position in the line.
Composition operators
val (|>) : 'a -> ('a -> 'b) -> 'b
Reverse-application operator: x |> f |> g
is exactly equivalent to g (f (x))
.
val (@@) : ('a -> 'b) -> 'a -> 'b
Application operator: g @@ f @@ x
is exactly equivalent to g (f (x))
.
Integer arithmetic
Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.
Unary negation. You can also write - e
instead of ~- e
.
Unary addition. You can also write + e
instead of ~+ e
.
val (+) : int -> int -> int
val (-) : int -> int -> int
val (*) : int -> int -> int
val (/) : int -> int -> int
Integer division. Raise Division_by_zero
if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0
and y > 0
, x / y
is the greatest integer less than or equal to the real quotient of x
by y
. Moreover, (- x) / y = x / (- y) = - (x / y)
.
val (mod) : int -> int -> int
Integer remainder. If y
is not zero, the result of x mod y
satisfies the following properties: x = (x / y) * y + x mod y
and abs(x mod y) <= abs(y) - 1
. If y = 0
, x mod y
raises Division_by_zero
. Note that x mod y
is negative only if x < 0
. Raise Division_by_zero
if y
is zero.
Return the absolute value of the argument. Note that this may be negative if the argument is min_int
.
The greatest representable integer.
The smallest representable integer.
Bitwise operations
val (land) : int -> int -> int
val (lor) : int -> int -> int
val (lxor) : int -> int -> int
Bitwise logical exclusive or.
Bitwise logical negation.
val (lsl) : int -> int -> int
n lsl m
shifts n
to the left by m
bits. The result is unspecified if m < 0
or m >= bitsize
, where bitsize
is 32
on a 32-bit platform and 64
on a 64-bit platform.
val (lsr) : int -> int -> int
n lsr m
shifts n
to the right by m
bits. This is a logical shift: zeroes are inserted regardless of the sign of n
. The result is unspecified if m < 0
or m >= bitsize
.
val (asr) : int -> int -> int
n asr m
shifts n
to the right by m
bits. This is an arithmetic shift: the sign bit of n
is replicated. The result is unspecified if m < 0
or m >= bitsize
.
Floating-point arithmetic
OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity
for 1.0 /. 0.0
, neg_infinity
for -1.0 /. 0.0
, and nan
('not a number') for 0.0 /. 0.0
. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity
is 0.0
, and any arithmetic operation with nan
as argument returns nan
as result.
val (~-.) : float -> float
Unary negation. You can also write -. e
instead of ~-. e
.
val (~+.) : float -> float
Unary addition. You can also write +. e
instead of ~+. e
.
val (+.) : float -> float -> float
val (-.) : float -> float -> float
Floating-point subtraction
val (*.) : float -> float -> float
Floating-point multiplication
val (/.) : float -> float -> float
val (**) : float -> float -> float
val sqrt : float -> float
val log10 : float -> float
val expm1 : float -> float
expm1 x
computes exp x -. 1.0
, giving numerically-accurate results even if x
is close to 0.0
.
val log1p : float -> float
log1p x
computes log(1.0 +. x)
(natural logarithm), giving numerically-accurate results even if x
is close to 0.0
.
Cosine. Argument is in radians.
Sine. Argument is in radians.
Tangent. Argument is in radians.
val acos : float -> float
Arc cosine. The argument must fall within the range [-1.0, 1.0]
. Result is in radians and is between 0.0
and pi
.
val asin : float -> float
Arc sine. The argument must fall within the range [-1.0, 1.0]
. Result is in radians and is between -pi/2
and pi/2
.
val atan : float -> float
Arc tangent. Result is in radians and is between -pi/2
and pi/2
.
val atan2 : float -> float -> float
atan2 y x
returns the arc tangent of y /. x
. The signs of x
and y
are used to determine the quadrant of the result. Result is in radians and is between -pi
and pi
.
val hypot : float -> float -> float
hypot x y
returns sqrt(x *. x + y *. y)
, that is, the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or, equivalently, the distance of the point (x,y)
to origin.
val cosh : float -> float
Hyperbolic cosine. Argument is in radians.
val sinh : float -> float
Hyperbolic sine. Argument is in radians.
val tanh : float -> float
Hyperbolic tangent. Argument is in radians.
val acosh : float -> float
Hyperbolic arc cosine. The argument must fall within the range [1.0, inf]
. Result is in radians and is between 0.0
and inf
.
val asinh : float -> float
Hyperbolic arc sine. The argument and result range over the entire real line. Result is in radians.
val atanh : float -> float
Hyperbolic arc tangent. The argument must fall within the range [-1.0, 1.0]
. Result is in radians and ranges over the entire real line.
val ceil : float -> float
Round above to an integer value. ceil f
returns the least integer value greater than or equal to f
. The result is returned as a float.
val floor : float -> float
Round below to an integer value. floor f
returns the greatest integer value less than or equal to f
. The result is returned as a float.
val abs_float : float -> float
abs_float f
returns the absolute value of f
.
val copysign : float -> float -> float
copysign x y
returns a float whose absolute value is that of x
and whose sign is that of y
. If x
is nan
, returns nan
. If y
is nan
, returns either x
or -. x
, but it is not specified which.
val mod_float : float -> float -> float
mod_float a b
returns the remainder of a
with respect to b
. The returned value is a -. n *. b
, where n
is the quotient a /. b
rounded towards zero to an integer.
val frexp : float -> float * int
frexp f
returns the pair of the significant and the exponent of f
. When f
is zero, the significant x
and the exponent n
of f
are equal to zero. When f
is non-zero, they are defined by f = x *. 2 ** n
and 0.5 <= x < 1.0
.
val ldexp : float -> int -> float
ldexp x n
returns x *. 2 ** n
.
val modf : float -> float * float
modf f
returns the pair of the fractional and integral part of f
.
Same as Caml.float_of_int
.
val float_of_int : int -> float
Convert an integer to floating-point.
val truncate : float -> int
Same as Caml.int_of_float
.
val int_of_float : float -> int
Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan
or falls outside the range of representable integers.
A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0
. Stands for 'not a number'. Any floating-point operation with nan
as argument returns nan
as result. As for floating-point comparisons, =
, <
, <=
, >
and >=
return false
and <>
returns true
if one or both of their arguments is nan
.
The largest positive finite value of type float
.
The smallest positive, non-zero, non-denormalized value of type float
.
val epsilon_float : float
The difference between 1.0
and the smallest exactly representable floating-point number greater than 1.0
.
type fpclass = Stdlib.fpclass =
| FP_normal
Normal number, none of the below
| FP_subnormal
Number very close to 0.0, has reduced precision
| FP_zero
| FP_infinite
Number is positive or negative infinity
| FP_nan
Not a number: result of an undefined operation
The five classes of floating-point numbers, as determined by the Caml.classify_float
function.
val classify_float : float -> fpclass
Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.
String operations
More string operations are provided in module String
.
val (^) : string -> string -> string
Character operations
More character operations are provided in module Char
.
val int_of_char : char -> int
Return the ASCII code of the argument.
val char_of_int : int -> char
Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0--255.
Unit operations
Discard the value of its argument and return ()
. For instance, ignore(f x)
discards the result of the side-effecting function f
. It is equivalent to f x; ()
, except that the latter may generate a compiler warning; writing ignore(f x)
instead avoids the warning.
String conversion functions
val string_of_bool : bool -> string
Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.
val bool_of_string : string -> bool
Convert the given string to a boolean. Raise Invalid_argument "bool_of_string"
if the string is not "true"
or "false"
.
val string_of_int : int -> string
Return the string representation of an integer, in decimal.
val int_of_string : string -> int
Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x
or 0X
), octal (if it begins with 0o
or 0O
), or binary (if it begins with 0b
or 0B
). Raise Failure "int_of_string"
if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int
.
val string_of_float : float -> string
Return the string representation of a floating-point number.
val float_of_string : string -> float
Convert the given string to a float. Raise Failure "float_of_string"
if the given string is not a valid representation of a float.
Pair operations
val fst : ('a * 'b) -> 'a
Return the first component of a pair.
val snd : ('a * 'b) -> 'b
Return the second component of a pair.
List operations
More list operations are provided in module List
.
Note: all input/output functions can raise Sys_error
when the system calls they invoke fail.
type in_channel = Stdlib.in_channel
The type of input channel.
type out_channel = Stdlib.out_channel
The type of output channel.
val stdin : Stdlib.in_channel
The standard input for the process.
val stdout : Stdlib.out_channel
The standard output for the process.
val stderr : Stdlib.out_channel
The standard error output for the process.
Output functions on standard output
val print_char : char -> unit
Print a character on standard output.
val print_string : string -> unit
Print a string on standard output.
val print_bytes : bytes -> unit
Print a byte sequence on standard output.
val print_int : int -> unit
Print an integer, in decimal, on standard output.
val print_float : float -> unit
Print a floating-point number, in decimal, on standard output.
val print_endline : string -> unit
Print a string, followed by a newline character, on standard output and flush standard output.
val print_newline : unit -> unit
Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.
Output functions on standard error
val prerr_char : char -> unit
Print a character on standard error.
val prerr_string : string -> unit
Print a string on standard error.
val prerr_bytes : bytes -> unit
Print a byte sequence on standard error.
val prerr_int : int -> unit
Print an integer, in decimal, on standard error.
val prerr_float : float -> unit
Print a floating-point number, in decimal, on standard error.
val prerr_endline : string -> unit
Print a string, followed by a newline character on standard error and flush standard error.
val prerr_newline : unit -> unit
Print a newline character on standard error, and flush standard error.
val read_line : unit -> string
Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.
val read_int : unit -> int
Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string"
if the line read is not a valid representation of an integer.
val read_float : unit -> float
Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.
General output functions
type open_flag = Stdlib.open_flag =
| Open_rdonly
| Open_wronly
| Open_append
open for appending: always write at end of file.
| Open_creat
create the file if it does not exist.
| Open_trunc
empty the file if it already exists.
| Open_excl
fail if Open_creat and the file already exists.
| Open_binary
open in binary mode (no conversion).
| Open_text
open in text mode (may perform conversions).
| Open_nonblock
open in non-blocking mode.
Opening modes for Caml.open_out_gen
and Caml.open_in_gen
.
val open_out : string -> Stdlib.out_channel
Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.
val open_out_bin : string -> Stdlib.out_channel
Same as Caml.open_out
, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_out
.
val open_out_gen : Stdlib.open_flag list -> int -> string -> Stdlib.out_channel
open_out_gen mode perm filename
opens the named file for writing, as described above. The extra argument mode
specify the opening mode. The extra argument perm
specifies the file permissions, in case the file must be created. Caml.open_out
and Caml.open_out_bin
are special cases of this function.
val flush : Stdlib.out_channel -> unit
Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.
val flush_all : unit -> unit
Flush all open output channels; ignore errors.
val output_char : Stdlib.out_channel -> char -> unit
Write the character on the given output channel.
val output_string : Stdlib.out_channel -> string -> unit
Write the string on the given output channel.
val output_bytes : Stdlib.out_channel -> bytes -> unit
Write the byte sequence on the given output channel.
val output : Stdlib.out_channel -> bytes -> int -> int -> unit
output oc buf pos len
writes len
characters from byte sequence buf
, starting at offset pos
, to the given output channel oc
. Raise Invalid_argument "output"
if pos
and len
do not designate a valid range of buf
.
val output_substring : Stdlib.out_channel -> string -> int -> int -> unit
Same as output
but take a string as argument instead of a byte sequence.
val output_byte : Stdlib.out_channel -> int -> unit
Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.
val output_binary_int : Stdlib.out_channel -> int -> unit
Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Caml.input_binary_int
function. The format is compatible across all machines for a given version of OCaml.
val output_value : Stdlib.out_channel -> 'a -> unit
Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Caml.input_value
. See the description of module Marshal
for more information. Caml.output_value
is equivalent to Marshal.to_channel
with an empty list of flags.
val seek_out : Stdlib.out_channel -> int -> unit
seek_out chan pos
sets the current writing position to pos
for channel chan
. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.
val pos_out : Stdlib.out_channel -> int
Return the current writing position for the given channel. Does not work on channels opened with the Open_append
flag (returns unspecified results).
val out_channel_length : Stdlib.out_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.
val close_out : Stdlib.out_channel -> unit
Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error
exception when they are applied to a closed output channel, except close_out
and flush
, which do nothing when applied to an already closed channel. Note that close_out
may raise Sys_error
if the operating system signals an error when flushing or closing.
val close_out_noerr : Stdlib.out_channel -> unit
Same as close_out
, but ignore all errors.
val set_binary_mode_out : Stdlib.out_channel -> bool -> unit
set_binary_mode_out oc true
sets the channel oc
to binary mode: no translations take place during output. set_binary_mode_out oc false
sets the channel oc
to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n
to \r\n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
val open_in : string -> Stdlib.in_channel
Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.
val open_in_bin : string -> Stdlib.in_channel
Same as Caml.open_in
, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Caml.open_in
.
val open_in_gen : Stdlib.open_flag list -> int -> string -> Stdlib.in_channel
open_in_gen mode perm filename
opens the named file for reading, as described above. The extra arguments mode
and perm
specify the opening mode and file permissions. Caml.open_in
and Caml.open_in_bin
are special cases of this function.
Read one character from the given input channel. Raise End_of_file
if there are no more characters to read.
Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file
if the end of the file is reached at the beginning of line.
input ic buf pos len
reads up to len
characters from the given channel ic
, storing them in byte sequence buf
, starting at character number pos
. It returns the actual number of characters read, between 0 and len
(inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len
exclusive means that not all requested len
characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input
must be called again to read the remaining characters, if desired. (See also Caml.really_input
for reading exactly len
characters.) Exception Invalid_argument "input"
is raised if pos
and len
do not designate a valid range of buf
.
really_input ic buf pos len
reads len
characters from channel ic
, storing them in byte sequence buf
, starting at character number pos
. Raise End_of_file
if the end of file is reached before len
characters have been read. Raise Invalid_argument "really_input"
if pos
and len
do not designate a valid range of buf
.
really_input_string ic len
reads len
characters from channel ic
and returns them in a new string. Raise End_of_file
if the end of file is reached before len
characters have been read.
Same as Caml.input_char
, but return the 8-bit integer representing the character. Raise End_of_file
if an end of file was reached.
Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See Caml.output_binary_int
. Raise End_of_file
if an end of file was reached while reading the integer.
Read the representation of a structured value, as produced by Caml.output_value
, and return the corresponding value. This function is identical to Marshal.from_channel
; see the description of module Marshal
for more information, in particular concerning the lack of type safety.
val seek_in : Stdlib.in_channel -> int -> unit
seek_in chan pos
sets the current reading position to pos
for channel chan
. This works only for regular files. On files of other kinds, the behavior is unspecified.
val pos_in : Stdlib.in_channel -> int
Return the current reading position for the given channel.
val in_channel_length : Stdlib.in_channel -> int
Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.
val close_in : Stdlib.in_channel -> unit
Close the given channel. Input functions raise a Sys_error
exception when they are applied to a closed input channel, except close_in
, which does nothing when applied to an already closed channel.
val close_in_noerr : Stdlib.in_channel -> unit
Same as close_in
, but ignore all errors.
val set_binary_mode_in : Stdlib.in_channel -> bool -> unit
set_binary_mode_in ic true
sets the channel ic
to binary mode: no translations take place during input. set_binary_mode_out ic false
sets the channel ic
to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n
to \n
. This function has no effect under operating systems that do not distinguish between text mode and binary mode.
Operations on large files
Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64
) instead of regular integers (type int
), these alternate functions allow operating on files whose sizes are greater than max_int
.
References
type 'a ref = 'a Stdlib.ref = {
mutable contents : 'a;
}
The type of references (mutable indirection cells) containing a value of type 'a
.
Return a fresh reference containing the given value.
!r
returns the current contents of reference r
. Equivalent to fun r -> r.contents
.
val (:=) : 'a ref -> 'a -> unit
r := a
stores the value of a
in reference r
. Equivalent to fun r v -> r.contents <- v
.
val incr : int ref -> unit
Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r
.
val decr : int ref -> unit
Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r
.
Result type
type ('a, 'b) result = ('a, 'b) Stdlib.result =
| Ok of 'a
| Error of 'b
Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf
and to print data with formatted output functions from modules Printf
and Format
.
Format strings are made of three kinds of entities:
- conversions specifications, introduced by the special character
'%'
followed by one or more characters specifying what kind of argument to read or print, - formatting indications, introduced by the special character
'@'
followed by one or more characters specifying how to read or print the argument, - plain characters that are regular characters with usual lexical conventions. Plain characters specify string literals to be read in the input or printed in the output.
There is an additional lexical rule to escape the special characters '%'
and '@'
in format strings: if a special character follows a '%'
character, it is treated as a plain character. In other words, "%%"
is considered as a plain '%'
and "%@"
as a plain '@'
.
For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf
, Printf
and Format
.
Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6
. The two simplified types, format
and format4
below are included for backward compatibility with earlier releases of OCaml.
The meaning of format string type parameters is as follows:
'a
is the type of the parameters of the format for formatted output functions (printf
-style functions); 'a
is the type of the values read by the format for formatted input functions (scanf
-style functions).
'b
is the type of input source for formatted input functions and the type of output target for formatted output functions. For printf
-style functions from module Printf
, 'b
is typically out_channel
; for printf
-style functions from module Format
, 'b
is typically Format.formatter
; for scanf
-style functions from module Scanf
, 'b
is typically Scanf.Scanning.in_channel
.
Type argument 'b
is also the type of the first argument given to user's defined printing functions for %a
and %t
conversions, and user's defined reading functions for %r
conversion.
'c
is the type of the result of the %a
and %t
printing functions, and also the type of the argument transmitted to the first argument of kprintf
-style functions or to the kscanf
-style functions.
'd
is the type of parameters for the scanf
-style functions.
'e
is the type of the receiver function for the scanf
-style functions.
'f
is the final result type of a formatted input/output function invocation: for the printf
-style functions, it is typically unit
; for the scanf
-style functions, it is typically the result type of the receiver function.
Converts a format string into a string.
format_of_string s
returns a format string read from the string literal s
. Note: format_of_string
can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string
function.
val (^^) :
('a, 'b, 'c, 'd, 'e, 'f) format6 ->
('f, 'b, 'c, 'e, 'g, 'h) format6 ->
('a, 'b, 'c, 'd, 'g, 'h) format6
f1 ^^ f2
catenates format strings f1
and f2
. The result is a format string that behaves as the concatenation of format strings f1
and f2
: in case of formatted output, it accepts arguments from f1
, then arguments from f2
; in case of formatted input, it returns results from f1
, then results from f2
.
Program termination
Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all
. An implicit exit 0
is performed each time a program terminates normally. An implicit exit 2
is performed if the program terminates early because of an uncaught exception.
val at_exit : (unit -> unit) -> unit
Register the given function to be called at program termination time. The functions registered with at_exit
will be called when the program executes Caml.exit
, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added with at_exit
is called first.
include module type of struct include Int.Replace_polymorphic_compare end
val (>=) : int -> int -> bool
val (<=) : int -> int -> bool
val (=) : int -> int -> bool
val (>) : int -> int -> bool
val (<) : int -> int -> bool
val (<>) : int -> int -> bool
val equal : int -> int -> bool
val compare : int -> int -> int
val min : int -> int -> int
val max : int -> int -> int
val (|!) : 'a -> ('a -> 'b) -> 'b
include module type of struct include Either.Export end
type (!'f, !'s) _either = ('f, 's) Base__Either.t =
| First of 'f
| Second of 's
type bigstring = Sexplib.Conv.bigstring
val sexp_of_bigstring : bigstring -> Sexplib0.Sexp.t
val bigstring_of_sexp : Sexplib0.Sexp.t -> bigstring
type mat = Sexplib.Conv.mat
val sexp_of_mat : mat -> Sexplib0.Sexp.t
val mat_of_sexp : Sexplib0.Sexp.t -> mat
type vec = Sexplib.Conv.vec
val sexp_of_vec : vec -> Sexplib0.Sexp.t
val vec_of_sexp : Sexplib0.Sexp.t -> vec
val sexp_of_opaque : _ -> Base.Sexp.t
val opaque_of_sexp : Base.Sexp.t -> _
val sexp_of_pair :
('a -> Base.Sexp.t) ->
('b -> Base.Sexp.t) ->
('a * 'b) ->
Base.Sexp.t
val pair_of_sexp :
(Base.Sexp.t -> 'a) ->
(Base.Sexp.t -> 'b) ->
Base.Sexp.t ->
'a * 'b
exception Of_sexp_error of Base.Exn.t * Base.Sexp.t
val of_sexp_error : Base.String.t -> Base.Sexp.t -> _
val of_sexp_error_exn : Base.Exn.t -> Base.Sexp.t -> _
include module type of struct include Interfaces end
include module type of struct include List.Infix end
val (@) : 'a Base__List.t -> 'a Base__List.t -> 'a Base__List.t
include module type of struct include Perms.Export end
val compare_read : read -> read -> Base.Int.t
val hash_fold_read :
Ppx_hash_lib.Std.Hash.state ->
read ->
Ppx_hash_lib.Std.Hash.state
val hash_read : read -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_read : read -> Sexplib0.Sexp.t
val read_of_sexp : Sexplib0.Sexp.t -> read
We don't expose bin_io
for write
due to a naming conflict with the functions exported by bin_io
for read_write
. If you want bin_io
for write
, use Write.t
.
val hash_fold_write :
Ppx_hash_lib.Std.Hash.state ->
write ->
Ppx_hash_lib.Std.Hash.state
val hash_write : write -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_write : write -> Sexplib0.Sexp.t
val write_of_sexp : Sexplib0.Sexp.t -> write
val hash_fold_immutable :
Ppx_hash_lib.Std.Hash.state ->
immutable ->
Ppx_hash_lib.Std.Hash.state
val hash_immutable : immutable -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_immutable : immutable -> Sexplib0.Sexp.t
val immutable_of_sexp : Sexplib0.Sexp.t -> immutable
val hash_fold_read_write :
Ppx_hash_lib.Std.Hash.state ->
read_write ->
Ppx_hash_lib.Std.Hash.state
val hash_read_write : read_write -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_read_write : read_write -> Sexplib0.Sexp.t
val read_write_of_sexp : Sexplib0.Sexp.t -> read_write
val compare_perms :
('a -> 'a -> Base.Int.t) ->
'a perms ->
'a perms ->
Base.Int.t
val globalize_perms : ('a -> 'a) -> 'a perms -> 'a perms
val hash_fold_perms :
(Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) ->
Ppx_hash_lib.Std.Hash.state ->
'a perms ->
Ppx_hash_lib.Std.Hash.state
val sexp_of_perms : ('a -> Sexplib0.Sexp.t) -> 'a perms -> Sexplib0.Sexp.t
val perms_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a perms
include module type of struct include Result.Export end
type (!'ok, !'err) _result = ('ok, 'err) Result.t =
| Ok of 'ok
| Error of 'err
val is_error : ('a, 'b) Result.t -> bool
type -'a return = private 'a Core__.Import.With_return.return = {
return : 'b. 'a -> 'b;
}
exception C_malloc_exn of Base.Int.t * Base.Int.t
Raised if malloc in C bindings fail (errno * size).
exception Finally of Core__.Import.Exn.t * Core__.Import.Exn.t
val fst3 : ('a * 'b * 'c) -> 'a
val snd3 : ('a * 'b * 'c) -> 'b
val trd3 : ('a * 'b * 'c) -> 'c
val phys_same : 'a -> 'b -> Base.Bool.t
phys_same
is like phys_equal
, but with a more general type. phys_same
is useful when dealing with existential types, when one has a packed value and an unpacked value that one wants to check are physically equal. One can't use phys_equal
in such a situation because the types are different.
val (==>) : bool -> bool -> bool
val bprintf :
Base__.Import0.Stdlib.Buffer.t ->
('a, Base__.Import0.Stdlib.Buffer.t, unit) Stdlib.format ->
'a
val const : 'a -> 'b -> 'a
val eprintf : ('a, Stdlib.out_channel, Base.Unit.t) Stdlib.format -> 'a
val error :
?here:Base__.Source_code_position0.t ->
?strict:unit ->
string ->
'a ->
('a -> Base__.Sexp.t) ->
'b Or_error.t
val failwithf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val failwiths :
?strict:Base.Unit.t ->
here:Stdlib.Lexing.position ->
Base.String.t ->
'a ->
('a -> Base.Sexp.t) ->
'b
val force : 'a Base.Lazy.t -> 'a
val fprintf :
Stdlib.out_channel ->
('a, Stdlib.out_channel, Base.Unit.t) Stdlib.format ->
'a
val invalid_argf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val ifprintf : 'a -> ('b, 'a, 'c, unit) Stdlib.format4 -> 'b
val is_none : 'a option -> bool
val is_some : 'a option -> bool
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'b
val print_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val eprint_s : ?mach:Base.unit -> Base.Sexp.t -> Base.unit
val printf : ('a, Stdlib.out_channel, Base.Unit.t) Stdlib.format -> 'a
val protect : f:(unit -> 'a) -> finally:(unit -> unit) -> 'a
val protectx : f:('a -> 'b) -> 'a -> finally:('a -> unit) -> 'b
val raise_s : Base__.Sexp.t -> 'a
val round : ?dir:[ `Down | `Nearest | `Up | `Zero ] -> float -> float
val (**.) : Base__Float.t -> Base__Float.t -> Base__Float.t
val (%.) : Base__Float.t -> Base__Float.t -> Base__Float.t
val sprintf : ('a, unit, string) Stdlib.format -> 'a
val stage : 'a -> 'a Core__.Import.Staged.t
val unstage : 'a Core__.Import.Staged.t -> 'a
val with_return : ('a Core__.Import.With_return.return -> 'a) -> 'a
val with_return_option :
('a Core__.Import.With_return.return -> unit) ->
'a option
include module type of struct include Typerep_lib.Std_internal end
module Typerep : sig ... end
val typerep_of_int63 : Base.Int63.t Typerep.t
type tuple0 = Typerep_lib__Std_internal.tuple0
val typerep_of_function : 'a Typerep.t -> 'b Typerep.t -> ('a -> 'b) Typerep.t
val typerep_of_tuple0 : tuple0 Typerep.t
val typerep_of_tuple2 : 'a Typerep.t -> 'b Typerep.t -> ('a * 'b) Typerep.t
val typerep_of_tuple3 :
'a Typerep.t ->
'b Typerep.t ->
'c Typerep.t ->
('a * 'b * 'c) Typerep.t
val typerep_of_tuple4 :
'a Typerep.t ->
'b Typerep.t ->
'c Typerep.t ->
'd Typerep.t ->
('a * 'b * 'c * 'd) Typerep.t
val typerep_of_tuple5 :
'a Typerep.t ->
'b Typerep.t ->
'c Typerep.t ->
'd Typerep.t ->
'e Typerep.t ->
('a * 'b * 'c * 'd * 'e) Typerep.t
val typename_of_int63 : Base.Int63.t Typerep_lib.Typename.t
val typename_of_function :
'a Typerep_lib.Typename.t ->
'b Typerep_lib.Typename.t ->
('a -> 'b) Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val typename_of_tuple2 :
'a Typerep_lib.Typename.t ->
'b Typerep_lib.Typename.t ->
('a * 'b) Typerep_lib.Typename.t
val typename_of_tuple3 :
'a Typerep_lib.Typename.t ->
'b Typerep_lib.Typename.t ->
'c Typerep_lib.Typename.t ->
('a * 'b * 'c) Typerep_lib.Typename.t
val typename_of_tuple4 :
'a Typerep_lib.Typename.t ->
'b Typerep_lib.Typename.t ->
'c Typerep_lib.Typename.t ->
'd Typerep_lib.Typename.t ->
('a * 'b * 'c * 'd) Typerep_lib.Typename.t
val typename_of_tuple5 :
'a Typerep_lib.Typename.t ->
'b Typerep_lib.Typename.t ->
'c Typerep_lib.Typename.t ->
'd Typerep_lib.Typename.t ->
'e Typerep_lib.Typename.t ->
('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.t
include sig ... end
val compare_array :
('a -> 'a -> Base.Int.t) ->
'a Base.Array.t ->
'a Base.Array.t ->
Base.Int.t
val equal_array :
('a -> 'a -> Base.Bool.t) ->
'a Base.Array.t ->
'a Base.Array.t ->
Base.Bool.t
val globalize_array : ('a -> 'a) -> 'a Base.Array.t -> 'a Base.Array.t
val sexp_of_array :
('a -> Sexplib0.Sexp.t) ->
'a Base.Array.t ->
Sexplib0.Sexp.t
val array_of_sexp :
(Sexplib0.Sexp.t -> 'a) ->
Sexplib0.Sexp.t ->
'a Base.Array.t
val array_sexp_grammar :
'a Sexplib0.Sexp_grammar.t ->
'a Base.Array.t Sexplib0.Sexp_grammar.t
val typerep_of_array :
'a Typerep_lib.Std.Typerep.t ->
'a Base.Array.t Typerep_lib.Std.Typerep.t
val typename_of_array :
'a Typerep_lib.Std.Typename.t ->
'a Base.Array.t Typerep_lib.Std.Typename.t
val compare_bool : Base.Bool.t -> Base.Bool.t -> Base.Int.t
val equal_bool : Base.Bool.t -> Base.Bool.t -> Base.Bool.t
val globalize_bool : Base.Bool.t -> Base.Bool.t
val hash_fold_bool :
Ppx_hash_lib.Std.Hash.state ->
Base.Bool.t ->
Ppx_hash_lib.Std.Hash.state
val hash_bool : Base.Bool.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_bool : Base.Bool.t -> Sexplib0.Sexp.t
val bool_of_sexp : Sexplib0.Sexp.t -> Base.Bool.t
val bool_sexp_grammar : Base.Bool.t Sexplib0.Sexp_grammar.t
val typerep_of_bool : Base.Bool.t Typerep_lib.Std.Typerep.t
val typename_of_bool : Base.Bool.t Typerep_lib.Std.Typename.t
val compare_char : Base.Char.t -> Base.Char.t -> Base.Int.t
val equal_char : Base.Char.t -> Base.Char.t -> Base.Bool.t
val globalize_char : Base.Char.t -> Base.Char.t
val hash_fold_char :
Ppx_hash_lib.Std.Hash.state ->
Base.Char.t ->
Ppx_hash_lib.Std.Hash.state
val hash_char : Base.Char.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_char : Base.Char.t -> Sexplib0.Sexp.t
val char_of_sexp : Sexplib0.Sexp.t -> Base.Char.t
val char_sexp_grammar : Base.Char.t Sexplib0.Sexp_grammar.t
val typerep_of_char : Base.Char.t Typerep_lib.Std.Typerep.t
val typename_of_char : Base.Char.t Typerep_lib.Std.Typename.t
val compare_float : Base.Float.t -> Base.Float.t -> Base.Int.t
val equal_float : Base.Float.t -> Base.Float.t -> Base.Bool.t
val globalize_float : Base.Float.t -> Base.Float.t
val hash_fold_float :
Ppx_hash_lib.Std.Hash.state ->
Base.Float.t ->
Ppx_hash_lib.Std.Hash.state
val hash_float : Base.Float.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_float : Base.Float.t -> Sexplib0.Sexp.t
val float_of_sexp : Sexplib0.Sexp.t -> Base.Float.t
val float_sexp_grammar : Base.Float.t Sexplib0.Sexp_grammar.t
val typerep_of_float : Base.Float.t Typerep_lib.Std.Typerep.t
val typename_of_float : Base.Float.t Typerep_lib.Std.Typename.t
val compare_int : Base.Int.t -> Base.Int.t -> Base.Int.t
val equal_int : Base.Int.t -> Base.Int.t -> Base.Bool.t
val globalize_int : Base.Int.t -> Base.Int.t
val hash_fold_int :
Ppx_hash_lib.Std.Hash.state ->
Base.Int.t ->
Ppx_hash_lib.Std.Hash.state
val hash_int : Base.Int.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_int : Base.Int.t -> Sexplib0.Sexp.t
val int_of_sexp : Sexplib0.Sexp.t -> Base.Int.t
val int_sexp_grammar : Base.Int.t Sexplib0.Sexp_grammar.t
val typerep_of_int : Base.Int.t Typerep_lib.Std.Typerep.t
val typename_of_int : Base.Int.t Typerep_lib.Std.Typename.t
val compare_int32 : Base.Int32.t -> Base.Int32.t -> Base.Int.t
val equal_int32 : Base.Int32.t -> Base.Int32.t -> Base.Bool.t
val globalize_int32 : Base.Int32.t -> Base.Int32.t
val hash_fold_int32 :
Ppx_hash_lib.Std.Hash.state ->
Base.Int32.t ->
Ppx_hash_lib.Std.Hash.state
val hash_int32 : Base.Int32.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_int32 : Base.Int32.t -> Sexplib0.Sexp.t
val int32_of_sexp : Sexplib0.Sexp.t -> Base.Int32.t
val int32_sexp_grammar : Base.Int32.t Sexplib0.Sexp_grammar.t
val typerep_of_int32 : Base.Int32.t Typerep_lib.Std.Typerep.t
val typename_of_int32 : Base.Int32.t Typerep_lib.Std.Typename.t
val compare_int64 : Base.Int64.t -> Base.Int64.t -> Base.Int.t
val equal_int64 : Base.Int64.t -> Base.Int64.t -> Base.Bool.t
val globalize_int64 : Base.Int64.t -> Base.Int64.t
val hash_fold_int64 :
Ppx_hash_lib.Std.Hash.state ->
Base.Int64.t ->
Ppx_hash_lib.Std.Hash.state
val hash_int64 : Base.Int64.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_int64 : Base.Int64.t -> Sexplib0.Sexp.t
val int64_of_sexp : Sexplib0.Sexp.t -> Base.Int64.t
val int64_sexp_grammar : Base.Int64.t Sexplib0.Sexp_grammar.t
val typerep_of_int64 : Base.Int64.t Typerep_lib.Std.Typerep.t
val typename_of_int64 : Base.Int64.t Typerep_lib.Std.Typename.t
val compare_lazy_t :
('a -> 'a -> Base.Int.t) ->
'a lazy_t ->
'a lazy_t ->
Base.Int.t
val hash_fold_lazy_t :
(Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) ->
Ppx_hash_lib.Std.Hash.state ->
'a lazy_t ->
Ppx_hash_lib.Std.Hash.state
val sexp_of_lazy_t : ('a -> Sexplib0.Sexp.t) -> 'a lazy_t -> Sexplib0.Sexp.t
val lazy_t_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a lazy_t
val lazy_t_sexp_grammar :
'a Sexplib0.Sexp_grammar.t ->
'a lazy_t Sexplib0.Sexp_grammar.t
val typerep_of_lazy_t :
'a Typerep_lib.Std.Typerep.t ->
'a lazy_t Typerep_lib.Std.Typerep.t
val typename_of_lazy_t :
'a Typerep_lib.Std.Typename.t ->
'a lazy_t Typerep_lib.Std.Typename.t
val compare_list :
('a -> 'a -> Base.Int.t) ->
'a Base.List.t ->
'a Base.List.t ->
Base.Int.t
val equal_list :
('a -> 'a -> Base.Bool.t) ->
'a Base.List.t ->
'a Base.List.t ->
Base.Bool.t
val globalize_list : ('a -> 'a) -> 'a Base.List.t -> 'a Base.List.t
val hash_fold_list :
(Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) ->
Ppx_hash_lib.Std.Hash.state ->
'a Base.List.t ->
Ppx_hash_lib.Std.Hash.state
val sexp_of_list : ('a -> Sexplib0.Sexp.t) -> 'a Base.List.t -> Sexplib0.Sexp.t
val list_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a Base.List.t
val list_sexp_grammar :
'a Sexplib0.Sexp_grammar.t ->
'a Base.List.t Sexplib0.Sexp_grammar.t
val typerep_of_list :
'a Typerep_lib.Std.Typerep.t ->
'a Base.List.t Typerep_lib.Std.Typerep.t
val typename_of_list :
'a Typerep_lib.Std.Typename.t ->
'a Base.List.t Typerep_lib.Std.Typename.t
val compare_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Int.t
val equal_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Bool.t
val globalize_nativeint : Base.Nativeint.t -> Base.Nativeint.t
val hash_fold_nativeint :
Ppx_hash_lib.Std.Hash.state ->
Base.Nativeint.t ->
Ppx_hash_lib.Std.Hash.state
val hash_nativeint : Base.Nativeint.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_nativeint : Base.Nativeint.t -> Sexplib0.Sexp.t
val nativeint_of_sexp : Sexplib0.Sexp.t -> Base.Nativeint.t
val nativeint_sexp_grammar : Base.Nativeint.t Sexplib0.Sexp_grammar.t
val typerep_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typerep.t
val typename_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typename.t
val compare_option :
('a -> 'a -> Base.Int.t) ->
'a Base.Option.t ->
'a Base.Option.t ->
Base.Int.t
val equal_option :
('a -> 'a -> Base.Bool.t) ->
'a Base.Option.t ->
'a Base.Option.t ->
Base.Bool.t
val globalize_option : ('a -> 'a) -> 'a Base.Option.t -> 'a Base.Option.t
val hash_fold_option :
(Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) ->
Ppx_hash_lib.Std.Hash.state ->
'a Base.Option.t ->
Ppx_hash_lib.Std.Hash.state
val sexp_of_option :
('a -> Sexplib0.Sexp.t) ->
'a Base.Option.t ->
Sexplib0.Sexp.t
val option_of_sexp :
(Sexplib0.Sexp.t -> 'a) ->
Sexplib0.Sexp.t ->
'a Base.Option.t
val option_sexp_grammar :
'a Sexplib0.Sexp_grammar.t ->
'a Base.Option.t Sexplib0.Sexp_grammar.t
val typerep_of_option :
'a Typerep_lib.Std.Typerep.t ->
'a Base.Option.t Typerep_lib.Std.Typerep.t
val typename_of_option :
'a Typerep_lib.Std.Typename.t ->
'a Base.Option.t Typerep_lib.Std.Typename.t
val compare_string : Base.String.t -> Base.String.t -> Base.Int.t
val equal_string : Base.String.t -> Base.String.t -> Base.Bool.t
val globalize_string : Base.String.t -> Base.String.t
val hash_fold_string :
Ppx_hash_lib.Std.Hash.state ->
Base.String.t ->
Ppx_hash_lib.Std.Hash.state
val hash_string : Base.String.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_string : Base.String.t -> Sexplib0.Sexp.t
val string_of_sexp : Sexplib0.Sexp.t -> Base.String.t
val string_sexp_grammar : Base.String.t Sexplib0.Sexp_grammar.t
val typerep_of_string : Base.String.t Typerep_lib.Std.Typerep.t
val typename_of_string : Base.String.t Typerep_lib.Std.Typename.t
val compare_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Int.t
val equal_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Bool.t
val globalize_bytes : Base.Bytes.t -> Base.Bytes.t
val sexp_of_bytes : Base.Bytes.t -> Sexplib0.Sexp.t
val bytes_of_sexp : Sexplib0.Sexp.t -> Base.Bytes.t
val bytes_sexp_grammar : Base.Bytes.t Sexplib0.Sexp_grammar.t
val typerep_of_bytes : Base.Bytes.t Typerep_lib.Std.Typerep.t
val typename_of_bytes : Base.Bytes.t Typerep_lib.Std.Typename.t
val compare_ref : ('a -> 'a -> Base.Int.t) -> 'a ref -> 'a ref -> Base.Int.t
val equal_ref : ('a -> 'a -> Base.Bool.t) -> 'a ref -> 'a ref -> Base.Bool.t
val globalize_ref : ('a -> 'a) -> 'a ref -> 'a ref
val sexp_of_ref : ('a -> Sexplib0.Sexp.t) -> 'a ref -> Sexplib0.Sexp.t
val ref_of_sexp : (Sexplib0.Sexp.t -> 'a) -> Sexplib0.Sexp.t -> 'a ref
val ref_sexp_grammar :
'a Sexplib0.Sexp_grammar.t ->
'a ref Sexplib0.Sexp_grammar.t
val typerep_of_ref :
'a Typerep_lib.Std.Typerep.t ->
'a ref Typerep_lib.Std.Typerep.t
val typename_of_ref :
'a Typerep_lib.Std.Typename.t ->
'a ref Typerep_lib.Std.Typename.t
val compare_unit : Base.Unit.t -> Base.Unit.t -> Base.Int.t
val equal_unit : Base.Unit.t -> Base.Unit.t -> Base.Bool.t
val globalize_unit : Base.Unit.t -> Base.Unit.t
val hash_fold_unit :
Ppx_hash_lib.Std.Hash.state ->
Base.Unit.t ->
Ppx_hash_lib.Std.Hash.state
val hash_unit : Base.Unit.t -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_unit : Base.Unit.t -> Sexplib0.Sexp.t
val unit_of_sexp : Sexplib0.Sexp.t -> Base.Unit.t
val unit_sexp_grammar : Base.Unit.t Sexplib0.Sexp_grammar.t
val typerep_of_unit : Base.Unit.t Typerep_lib.Std.Typerep.t
val typename_of_unit : Base.Unit.t Typerep_lib.Std.Typename.t
val sexp_of_exn : Core__.Import.Exn.t -> Sexplib0.Sexp.t
exception Not_found_s of Sexplib0.Sexp.t
Top-level values
val phys_equal : 'a -> 'a -> Base.Bool.t
type 'a _maybe_bound = 'a Maybe_bound.t =
| Incl of 'a
| Excl of 'a
| Unbounded
val am_running_test : bool
val does_raise : (unit -> 'a) -> bool
val (^/) : Base.string -> Base.string -> Base.string
To be used in implementing Core, but not by end users.