package coq
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=3cbfc1e1a72b16d4744f5b64ede59586071e31d9c11c811a0372060727bfd9c3
doc/coq-core.kernel/Declarations/index.html
Module DeclarationsSource
This module defines the internal representation of global declarations. This includes global constants/axioms, mutual inductive definitions, modules and module types
Representation of constants (Definition/Axiom)
Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives and constants hiding inductives are implicitly polymorphic when applied to parameters, on the universes appearing in the whnf of their parameters and their conclusion, in a template style.
In truly universe polymorphic mode, we always use RegularArity.
type template_universes = {template_param_levels : Univ.Level.t option list;template_context : Univ.ContextSet.t;
}Inlining level of parameters at functor applications. None means no inlining
A constant can have no body (axiom/parameter), or a transparent body, or an opaque one
type ('a, 'opaque) constant_def = | Undef of inline(*a global assumption
*)| Def of 'a(*or a transparent global definition
*)| OpaqueDef of 'opaque(*or an opaque global definition
*)| Primitive of CPrimitives.t(*or a primitive operation
*)
type typing_flags = {check_guarded : bool;(*If
*)falsethen fixed points and co-fixed points are assumed to be total.check_positive : bool;(*If
*)falsethen inductive types are assumed positive and co-inductive types are assumed productive.check_universes : bool;(*If
*)falseuniverse constraints are not checkedconv_oracle : Conv_oracle.oracle;(*Unfolding strategies for conversion
*)enable_VM : bool;(*If
*)false, all VM conversions fall back to interpreted onesenable_native_compiler : bool;(*If
*)false, all native conversions fall back to VM onesindices_matter : bool;(*The universe of an inductive type must be above that of its indices.
*)cumulative_sprop : bool;(*SProp <= Type
*)allow_uip : bool;(*Allow definitional UIP (breaks termination)
*)
}The typing_flags are instructions to the type-checker which modify its behaviour. The typing flags used in the type-checking of a constant are tracked in their constant_body so that they can be displayed to the user.
type 'opaque constant_body = {const_hyps : Constr.named_context;(*New: younger hyp at top
*)const_body : (Constr.t, 'opaque) constant_def;const_type : Constr.types;const_relevance : Sorts.relevance;const_body_code : Vmemitcodes.body_code option;const_universes : universes;const_inline_code : bool;const_typing_flags : typing_flags;(*The typing options which were used for type-checking.
*)
}Representation of mutual inductive types in the kernel
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
Record information: If the type is not a record, then NotRecord If the type is a non-primitive record, then FakeRecord If it is a primitive record, for every type in the block, we get:
- The identifier for the binder name of the record in primitive projections.
- The constants associated to each projection.
- The projection types (under parameters).
The kernel does not exploit the difference between NotRecord and FakeRecord. It is mostly used by extraction, and should be extruded from the kernel at some point.
type record_info = | NotRecord| FakeRecord| PrimRecord of (Names.Id.t * Names.Label.t array * Sorts.relevance array * Constr.types array) array
type one_inductive_body = {mind_typename : Names.Id.t;(*Name of the type:
*)Iimind_arity_ctxt : Constr.rel_context;(*Arity context of
*)Iiwith parameters:forall params, Uimind_arity : inductive_arity;(*Arity sort and original user arity
*)mind_consnames : Names.Id.t array;(*Names of the constructors:
*)cijmind_user_lc : Constr.types array;(*Types of the constructors with parameters:
*)forall params, Tij, where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Unmind_nrealargs : int;(*Number of expected real arguments of the type (no let, no params)
*)mind_nrealdecls : int;(*Length of realargs context (with let, no params)
*)mind_kelim : Sorts.family;(*Highest allowed elimination sort
*)mind_nf_lc : (Constr.rel_context * Constr.types) array;(*Head normalized constructor types so that their conclusion exposes the inductive type
*)mind_consnrealargs : int array;(*Number of expected proper arguments of the constructors (w/o params)
*)mind_consnrealdecls : int array;(*Length of the signature of the constructors (with let, w/o params)
*)mind_recargs : wf_paths;(*Signature of recursive arguments in the constructors
*)mind_relevance : Sorts.relevance;mind_nb_constant : int;(*number of constant constructor
*)mind_nb_args : int;(*number of no constant constructor
*)mind_reloc_tbl : Vmvalues.reloc_table;
}type mutual_inductive_body = {mind_packets : one_inductive_body array;(*The component of the mutual inductive block
*)mind_record : record_info;(*The record information
*)mind_finite : recursivity_kind;(*Whether the type is inductive or coinductive
*)mind_ntypes : int;(*Number of types in the block
*)mind_hyps : Constr.named_context;(*Section hypotheses on which the block depends
*)mind_nparams : int;(*Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in)
*)mind_nparams_rec : int;(*Number of recursively uniform (i.e. ordinary) parameters
*)mind_params_ctxt : Constr.rel_context;(*The context of parameters (includes let-in declaration)
*)mind_universes : universes;(*Information about monomorphic/polymorphic/cumulative inductives and their universes
*)mind_template : template_universes option;mind_variance : Univ.Variance.t array option;(*Variance info,
*)Nonewhen non-cumulative.mind_sec_variance : Univ.Variance.t array option;(*Variance info for section polymorphic universes.
*)Noneoutside sections. The final variance once all sections are discharged ismind_sec_variance ++ mind_variance.mind_private : bool option;(*allow pattern-matching: Some true ok, Some false blocked
*)mind_typing_flags : typing_flags;(*typing flags at the time of the inductive creation
*)
}Module declarations
Functor expressions are forced to be on top of other expressions
type ('ty, 'a) functorize = | NoFunctor of 'a| MoreFunctor of Names.MBId.t * 'ty * ('ty, 'a) functorize
The fully-algebraic module expressions : names, applications, 'with ...'. They correspond to the user entries of non-interactive modules. They will be later expanded into module structures in Mod_typing, and won't play any role into the kernel after that : they are kept only for short module printing and for extraction.
type with_declaration = | WithMod of Names.Id.t list * Names.ModPath.t| WithDef of Names.Id.t list * Constr.constr * Univ.AUContext.t option
type module_alg_expr = | MEident of Names.ModPath.t| MEapply of module_alg_expr * Names.ModPath.t| MEwith of module_alg_expr * with_declaration
A component of a module structure
type structure_field_body = | SFBconst of Opaqueproof.opaque constant_body| SFBmind of mutual_inductive_body| SFBmodule of module_body| SFBmodtype of module_type_body
A module structure is a list of labeled components.
Note : we may encounter now (at most) twice the same label in a structure_body, once for a module (SFBmodule or SFBmodtype) and once for an object (SFBconst or SFBmind)
A module signature is a structure, with possibly functors on top of it
A module expression is an algebraic expression, possibly functorized.
and module_implementation = | Abstract(*no accessible implementation
*)| Algebraic of module_expression(*non-interactive algebraic expression
*)| Struct of module_signature(*interactive body
*)| FullStruct(*special case of
*)Struct: the body is exactlymod_type
and 'a generic_module_body = {mod_mp : Names.ModPath.t;(*absolute path of the module
*)mod_expr : 'a;(*implementation
*)mod_type : module_signature;(*expanded type
*)mod_type_alg : module_expression option;(*algebraic type
*)mod_delta : Mod_subst.delta_resolver;(*quotiented set of equivalent constants and inductive names
*)mod_retroknowledge : 'a module_retroknowledge;
}For a module, there are five possible situations:
Declare Module M : Tthenmod_expr = Abstract; mod_type_alg = Some TModule M := Ethenmod_expr = Algebraic E; mod_type_alg = NoneModule M : T := Ethenmod_expr = Algebraic E; mod_type_alg = Some TModule M. ... End Mthenmod_expr = FullStruct; mod_type_alg = NoneModule M : T. ... End Mthenmod_expr = Struct; mod_type_alg = Some TAnd of course, all these situations may be functors or not.
A module_type_body is just a module_body with no implementation and also an empty mod_retroknowledge. Its mod_type_alg contains the algebraic definition of this module type, or None if it has been built interactively.
and _ module_retroknowledge = | ModBodyRK : Retroknowledge.action list -> module_implementation module_retroknowledge| ModTypeRK : unit module_retroknowledge
Extra invariants :
- No
MEwithinside amod_exprimplementation : the 'with' syntax is only supported for module types
- A module application is atomic, for instance ((M N) P) : * the head of
MEapplycan only be anotherMEapplyor aMEident* the argument ofMEapplyis now directly forced to be aModPath.t.