package coq-lsp
Language Server Protocol native server for Coq
Install
dune-project
Dependency
Authors
Maintainers
Sources
coq-lsp-0.1.9.8.18.tbz
sha256=99514bcbf82318b9ff857656f4ec1f87bb46f1c699a4f1e9fb06f5fcdd8d8839
sha512=fa4593a2ae416e554869a879da5d35a1d33efa5cc8743f77c05373875ecea267019989dec600d5e880d909aea97ce7f6990ac59e58aabce358e3693b0764bef8
doc/src/coq-lsp.coq/state.ml.html
Source file state.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
type t = Vernacstate.t (* EJGA: This requires patches to Coq, they are in the lsp_debug branch let any_out oc (a : Summary.Frozen.any) = (* let (Summary.Frozen.Any (tag, _value)) = a in *) (* let name = Summary.Dyn.repr tag in *) (* Lsp.Io.log_error "marshall" name; *) Marshal.to_channel oc a [] let _frozen_out oc (s : Summary.Frozen.t) = Summary.Frozen.iter (any_out oc) s let summary_out oc (s : Summary.frozen) = let { Summary.summaries; ml_module } = s in (* frozen_out oc summaries; *) Marshal.to_channel oc summaries []; Marshal.to_channel oc ml_module []; () let summary_in ic : Summary.frozen = let summaries = Marshal.from_channel ic in let ml_module = Marshal.from_channel ic in { Summary.summaries; ml_module } let system_out oc ((l : Lib.frozen), (s : Summary.frozen)) = (* Both parts of system have functional values !! Likely due to Lib.frozen having a Summary.frozen inside? *) Marshal.to_channel oc l [ Closures ]; summary_out oc s; () let system_in ic : Vernacstate.System.t = let l : Lib.frozen = Marshal.from_channel ic in let s : Summary.frozen = summary_in ic in (l, s) let _marshal_out oc st = let { Vernacstate.parsing; system; lemmas; program; opaques; shallow } = st in Marshal.to_channel oc parsing []; system_out oc system; (* lemmas doesn't !! *) Marshal.to_channel oc lemmas []; Marshal.to_channel oc program []; Marshal.to_channel oc opaques []; Marshal.to_channel oc shallow []; () let _marshal_in ic = let parsing = Marshal.from_channel ic in let system = system_in ic in let lemmas = Marshal.from_channel ic in let program = Marshal.from_channel ic in let opaques = Marshal.from_channel ic in let shallow = Marshal.from_channel ic in { Vernacstate.parsing; system; lemmas; program; opaques; shallow } *) let marshal_in ic : t = Marshal.from_channel ic let marshal_out oc st = Marshal.to_channel oc st [] let of_coq x = x let to_coq x = x (* let compare x y = compare x y *) let compare (x : t) (y : t) = let open Vernacstate in let { synterp = { parsing = p1; system = ss1 } ; interp = { system = is1; lemmas = l1; program = g1; opaques = o1 } } = x in let { synterp = { parsing = p2; system = ss2 } ; interp = { system = is2; lemmas = l2; program = g2; opaques = o2 } } = y in if p1 == p2 && ss1 == ss2 && is1 == is2 && l1 == l2 && g1 == g2 && o1 == o2 then 0 else 1 let equal x y = compare x y = 0 let hash x = Hashtbl.hash x let mode ~st = Option.map (fun _ -> Synterp.get_default_proof_mode ()) st.Vernacstate.interp.lemmas let parsing ~st = st.Vernacstate.synterp.parsing module Proof_ = Proof module Proof = struct type t = Vernacstate.LemmaStack.t let to_coq x = x end let lemmas ~st = st.Vernacstate.interp.lemmas let program ~st = NeList.head st.Vernacstate.interp.program |> Declare.OblState.view let drop_proofs ~st = let open Vernacstate in let interp = { st.interp with lemmas = Option.cata (fun s -> snd @@ Vernacstate.LemmaStack.pop s) None st.interp.lemmas } in { st with interp } let in_state ~token ~st ~f a = let f a = Vernacstate.unfreeze_full_state st; f a in Protect.eval ~token ~f a let in_stateM ~token ~st ~f a = let open Protect.E.O in let* () = Protect.eval ~token ~f:Vernacstate.unfreeze_full_state st in f a let admit ~st () = let () = Vernacstate.unfreeze_full_state st in match st.Vernacstate.interp.lemmas with | None -> st | Some lemmas -> let pm = NeList.head st.Vernacstate.interp.program in let proof, lemmas = Vernacstate.(LemmaStack.pop lemmas) in let pm = Declare.Proof.save_admitted ~pm ~proof in let program = NeList.map_head (fun _ -> pm) st.Vernacstate.interp.program in let st = Vernacstate.freeze_full_state () in { st with interp = { st.interp with lemmas; program } } let admit ~token ~st = Protect.eval ~token ~f:(admit ~st) () let admit_goal ~st () = let () = Vernacstate.unfreeze_full_state st in match st.Vernacstate.interp.lemmas with | None -> st | Some lemmas -> let f pf = Declare.Proof.by Proofview.give_up pf |> fst in let lemmas = Some (Vernacstate.LemmaStack.map_top ~f lemmas) in { st with interp = { st.interp with lemmas } } let admit_goal ~token ~st = Protect.eval ~token ~f:(admit_goal ~st) ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>