package containers-data
A set of advanced datatypes for containers
Install
dune-project
Dependency
Authors
Maintainers
Sources
containers-3.14.tbz
sha256=c94fba0c7c54349b7021c31f85120495197ddde438c574d48362ec669bf7e564
sha512=b33588d9df66a858083616cc70cd82822cecc2dcec8902759e72648e5c41c887556da0a28317f388d34afe319309c20dd8baa7508d003dddff00e83869fad861
doc/src/containers-data/CCDeque.ml.html
Source file CCDeque.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Imperative deque} *) type 'a cell = | One of 'a | Two of 'a * 'a | Three of 'a * 'a * 'a (** A cell holding a small number of elements *) type 'a inner_node = { mutable cell: 'a cell; mutable next: 'a inner_node; mutable prev: 'a inner_node; } type 'a node = | Empty | Node of 'a inner_node (** Linked list of cells. invariant: only the first and last cells are allowed to be anything but [Three] (all the intermediate ones are [Three]) *) type 'a t = { mutable cur: 'a node; mutable size: int; } (** The deque, a double linked list of cells *) exception Empty let create () = { cur = Empty; size = 0 } let clear q = q.cur <- Empty; q.size <- 0; () let incr_size_ d = d.size <- d.size + 1 let decr_size_ d = d.size <- d.size - 1 let bool_eq (a : bool) b = Stdlib.( = ) a b let is_empty d = let res = d.size = 0 in assert (bool_eq res (d.cur = Empty)); res let push_front d x = incr_size_ d; match d.cur with | Empty -> let rec node = { cell = One x; prev = node; next = node } in d.cur <- Node node | Node n -> (match n.cell with | One y -> n.cell <- Two (x, y) | Two (y, z) -> n.cell <- Three (x, y, z) | Three _ -> let node = { cell = One x; prev = n.prev; next = n } in n.prev.next <- node; n.prev <- node; d.cur <- Node node (* always point to first node *)) let push_back d x = incr_size_ d; match d.cur with | Empty -> let rec node = { cell = One x; prev = node; next = node } in d.cur <- Node node | Node cur -> let n = cur.prev in (* last node *) (match n.cell with | One y -> n.cell <- Two (y, x) | Two (y, z) -> n.cell <- Three (y, z, x) | Three _ -> let elt = { cell = One x; next = cur; prev = n } in n.next <- elt; cur.prev <- elt) let peek_front_opt d = match d.cur with | Empty -> None | Node cur -> (match cur.cell with | One x -> Some x | Two (x, _) -> Some x | Three (x, _, _) -> Some x) let peek_front d = match peek_front_opt d with | None -> raise Empty | Some x -> x let peek_back_opt d = match d.cur with | Empty -> None | Node cur -> (match cur.prev.cell with | One x -> Some x | Two (_, x) -> Some x | Three (_, _, x) -> Some x) let peek_back d = match peek_back_opt d with | None -> raise Empty | Some x -> x let take_back_node_ n = match n.cell with | One x -> true, x | Two (x, y) -> n.cell <- One x; false, y | Three (x, y, z) -> n.cell <- Two (x, y); false, z let remove_node_ n = let next = n.next in n.prev.next <- next; next.prev <- n.prev let take_back_opt d = match d.cur with | Empty -> None | Node cur -> if Stdlib.( == ) cur cur.prev then ( (* only one cell *) decr_size_ d; let is_zero, x = take_back_node_ cur in if is_zero then d.cur <- Empty; Some x ) else ( let n = cur.prev in let is_zero, x = take_back_node_ n in decr_size_ d; (* remove previous node *) if is_zero then remove_node_ n; Some x ) let take_back d = match take_back_opt d with | None -> raise Empty | Some x -> x let take_front_node_ n = match n.cell with | One x -> true, x | Two (x, y) -> n.cell <- One y; false, x | Three (x, y, z) -> n.cell <- Two (y, z); false, x let take_front_opt d = match d.cur with | Empty -> None | Node cur -> if Stdlib.( == ) cur.prev cur then ( (* only one cell *) decr_size_ d; let is_zero, x = take_front_node_ cur in if is_zero then d.cur <- Empty; Some x ) else ( decr_size_ d; let is_zero, x = take_front_node_ cur in if is_zero then ( cur.prev.next <- cur.next; cur.next.prev <- cur.prev; d.cur <- Node cur.next ); Some x ) let take_front d = match take_front_opt d with | None -> raise Empty | Some x -> x let remove_back d = ignore (take_back_opt d) let remove_front d = ignore (take_front_opt d) let update_front d f = match d.cur with | Empty -> () | Node cur -> (match cur.cell with | One x -> (match f x with | None -> if Stdlib.( != ) cur.prev cur then ( cur.prev.next <- cur.next; cur.next.prev <- cur.prev; d.cur <- Node cur.next ) else d.cur <- Empty | Some x -> cur.cell <- One x) | Two (x, y) -> (match f x with | None -> cur.cell <- One y | Some x -> cur.cell <- Two (x, y)) | Three (x, y, z) -> (match f x with | None -> cur.cell <- Two (y, z) | Some x -> cur.cell <- Three (x, y, z))) let update_back d f = match d.cur with | Empty -> () | Node cur -> let n = cur.prev in (match n.cell with | One x -> (match f x with | None -> if Stdlib.( != ) cur.prev cur then remove_node_ n else d.cur <- Empty | Some x -> n.cell <- One x) | Two (x, y) -> (match f y with | None -> n.cell <- One x | Some y -> n.cell <- Two (x, y)) | Three (x, y, z) -> (match f z with | None -> n.cell <- Two (x, y) | Some z -> n.cell <- Three (x, y, z))) let iter f d = let rec iter f ~first n = (match n.cell with | One x -> f x | Two (x, y) -> f x; f y | Three (x, y, z) -> f x; f y; f z); if n.next != first then iter f ~first n.next in match d.cur with | Empty -> () | Node cur -> iter f ~first:cur cur let append_front ~into q = iter (push_front into) q let append_back ~into q = iter (push_back into) q let fold f acc d = let rec aux ~first f acc n = let acc = match n.cell with | One x -> f acc x | Two (x, y) -> f (f acc x) y | Three (x, y, z) -> f (f (f acc x) y) z in if Stdlib.( == ) n.next first then acc else aux ~first f acc n.next in match d.cur with | Empty -> acc | Node cur -> aux ~first:cur f acc cur let length d = d.size type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option let add_iter_back q seq = seq (fun x -> push_back q x) let add_iter_front q seq = seq (fun x -> push_front q x) let of_iter seq = let deque = create () in seq (fun x -> push_back deque x); deque let to_iter d k = iter k d let of_list l = let q = create () in List.iter (push_back q) l; q let to_rev_list q = fold (fun l x -> x :: l) [] q let to_list q = List.rev (to_rev_list q) let size_cell_ = function | One _ -> 1 | Two _ -> 2 | Three _ -> 3 (* filter over a cell *) let filter_cell_ f = function | One x as c -> if f x then Some c else None | Two (x, y) as c -> let fx = f x in let fy = f y in (match fx, fy with | true, true -> Some c | true, false -> Some (One x) | false, true -> Some (One y) | _ -> None) | Three (x, y, z) as c -> let fx = f x in let fy = f y in let fz = f z in (match fx, fy, fz with | true, true, true -> Some c | true, true, false -> Some (Two (x, y)) | true, false, true -> Some (Two (x, z)) | true, false, false -> Some (One x) | false, true, true -> Some (Two (y, z)) | false, true, false -> Some (One y) | false, false, true -> Some (One z) | false, false, false -> None) let filter_in_place (d : _ t) f : unit = (* update size, compute new cell *) let update_local_ n = d.size <- d.size - size_cell_ n.cell; match filter_cell_ f n.cell with | None -> None | Some n as new_cell -> d.size <- d.size + size_cell_ n; new_cell in let rec loop ~stop_at n : unit = if n != stop_at then ( let n_prev = n.prev in let n_next = n.next in let new_cell = update_local_ n in (* merge into previous cell *) (match n_prev.cell, new_cell with | _, None -> remove_node_ n | Three _, Some new_cell -> n.cell <- new_cell | One x, Some (One y) -> remove_node_ n; n_prev.cell <- Two (x, y) | One x, Some (Two (y, z)) | Two (x, y), Some (One z) -> remove_node_ n; n_prev.cell <- Three (x, y, z) | One x, Some (Three (y, z, w)) | Two (x, y), Some (Two (z, w)) -> n_prev.cell <- Three (x, y, z); n.cell <- One w | Two (x, y), Some (Three (z, w1, w2)) -> n_prev.cell <- Three (x, y, z); n.cell <- Two (w1, w2)); loop ~stop_at n_next ) in let rec new_first_cell ~stop_at n = if n != stop_at then ( match update_local_ n with | None -> new_first_cell ~stop_at n.next | Some c -> n.cell <- c; Some n ) else None in match d.cur with | Empty -> () | Node cur -> (* special case for first cell *) (match update_local_ cur with | None -> (match new_first_cell ~stop_at:cur cur.next with | None -> d.cur <- Empty | Some n -> cur.prev.next <- n; n.prev <- cur.prev; d.cur <- Node n; loop ~stop_at:n n.next) | Some c -> cur.cell <- c; loop ~stop_at:cur cur.next) let filter f q = let q' = create () in iter (fun x -> if f x then push_back q' x) q; q' let filter_map f q = let q' = create () in iter (fun x -> match f x with | None -> () | Some y -> push_back q' y) q; q' let rec gen_iter_ f g = match g () with | None -> () | Some x -> f x; gen_iter_ f g let of_gen g = let q = create () in gen_iter_ (fun x -> push_back q x) g; q let to_gen q = match q.cur with | Empty -> fun () -> None | Node cur -> let first = cur in let cell = ref (Some cur.cell) in let cur = ref cur in let rec next () = match !cell with | None when Stdlib.( == ) !cur.next first -> None | None -> (* go to next node *) let n = !cur in cur := n.next; cell := Some n.next.cell; next () | Some (One x) -> cell := None; Some x | Some (Two (x, y)) -> cell := Some (One y); Some x | Some (Three (x, y, z)) -> cell := Some (Two (y, z)); Some x in next (* naive implem of copy, for now *) let copy d = let d' = create () in iter (fun x -> push_back d' x) d; d' let equal ~eq a b = let rec aux eq a b = match a (), b () with | None, None -> true | None, Some _ | Some _, None -> false | Some x, Some y -> eq x y && aux eq a b in aux eq (to_gen a) (to_gen b) let compare ~cmp a b = let rec aux cmp a b = match a (), b () with | None, None -> 0 | None, Some _ -> -1 | Some _, None -> 1 | Some x, Some y -> let c = cmp x y in if c = 0 then aux cmp a b else c in aux cmp (to_gen a) (to_gen b) type 'a printer = Format.formatter -> 'a -> unit let pp pp_x out d = let first = ref true in Format.fprintf out "@[<hov2>deque {"; iter (fun x -> if !first then first := false else Format.fprintf out ";@ "; pp_x out x) d; Format.fprintf out "}@]"
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>