package colibri2
Algebraic number with use of rational when possible
A
allows to determine certainly if something is an integer, but is not complete for rational. So Q is always used for integer and as best effort for rational
val zero : t
val one : t
val minus_one : t
0, 1, -1.
val of_int : int -> t
val to_int : t -> int
suppose that it is an integer
val sign : t -> int
include Colibri2_popop_lib.Popop_stdlib.Datatype with type t := t
include Colibri2_popop_lib.Popop_stdlib.OrderedHashedType with type t := t
val pp : t Colibri2_popop_lib.Pp.pp
val hash_fold_t : t Base.Hash.folder
module M : Colibri2_popop_lib.Map_intf.PMap with type key = t
module H : Colibri2_popop_lib.Exthtbl.Hashtbl.S with type key = t
val to_string : t -> string
val two : t
val of_string : string -> t
integer
val of_string_decimal : string -> t
val is_integer : t -> bool
val is_real : t -> bool
val inf : t
val minus_inf : t
val is_unsigned_integer : int -> t -> bool
is_unsigned_integer size q
checks that q
is an integer that fits in size
bits
val is_zero : t -> bool
val is_not_zero : t -> bool
val gen : t QCheck.Gen.t
val shrink : t QCheck.Shrink.t
val ctx : Calcium.CTX.t
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>