package catala
Compiler and library for the literate programming language for tax code specification
Install
dune-project
Dependency
Authors
Maintainers
Sources
1.0.0-alpha.tar.gz
md5=2615968670ac21b1d00386a9b04b3843
sha512=eff292fdd75012f26ce7b17020f5a8374eef37cd4dd6ba60338dfbe89fbcad3443d1b409e44c182b740da9f58dff7e76dcb8ddefe47f9b2b160666d1c6930143
doc/src/catala.shared_ast/optimizations.ml.html
Source file optimizations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Definitions type ('a, 'b, 'm) optimizations_ctx = { decl_ctx : decl_ctx } let binder_vars_used_at_most_once (binder : ( ('a dcalc_lcalc, 'a dcalc_lcalc, 'm) base_gexpr, ('a dcalc_lcalc, 'm) gexpr ) Bindlib.mbinder) : bool = (* fast path: variables not used at all *) (not (Array.exists Fun.id (Bindlib.mbinder_occurs binder))) || let vars, body = Bindlib.unmbind binder in let rec vars_count (e : ('a dcalc_lcalc, 'm) gexpr) : int array = match e with | EVar v, _ -> Array.map (fun vi -> if Bindlib.eq_vars v vi then 1 else 0) vars | e -> Expr.shallow_fold (fun e' acc -> Array.map2 (fun x y -> x + y) (vars_count e') acc) e (Array.make (Array.length vars) 0) in not (Array.exists (fun c -> c > 1) (vars_count body)) (* beta reduction when variables not used, and for variable aliases and literal *) let simplified_apply f args tys = match f, args with | _, [(EAbs { tys = (TClosureEnv, _) :: _; _ }, _)] -> (* Never inline lifted closures *) EApp { f; args; tys } | _, args when List.exists (fun e -> not (Expr.is_pure e)) args -> (* Do not inline unpure expressions *) EApp { f; args; tys } | (EAbs { binder; _ }, _), _ when binder_vars_used_at_most_once binder || List.for_all (function (EVar _ | ELit _), _ -> true | _ -> false) args -> Mark.remove (Bindlib.msubst binder (List.map fst args |> Array.of_list)) | _ -> EApp { f; args; tys } let literal_bool = function | ELit (LBool b), _ | EAppOp { op = Log _, _; args = [(ELit (LBool b), _)]; _ }, _ -> Some b | _ -> None let simplified_ifthenelse cond etrue efalse m = if Expr.equal etrue efalse then Mark.remove etrue else match literal_bool etrue, literal_bool efalse with | Some true, Some false -> Mark.remove cond | Some false, Some true -> EAppOp { op = Not, Expr.mark_pos m; tys = [TLit TBool, Expr.mark_pos m]; args = [cond]; } | Some true, Some true | Some false, Some false -> Mark.remove etrue | _ -> ( match literal_bool cond with | Some true -> Mark.remove etrue | Some false -> Mark.remove efalse | None -> EIfThenElse { cond; etrue; efalse }) (* builds a [EMatch] term, flattening nested matches/if-then-else: the matching arg branching are explored, and if they all lead to enum constructor literals, the surrounding match cases are inlined. Code duplication is detected and aborts the inlining. *) let simplified_match enum_name match_arg cases mark = let max_duplicate_inlining_size = 3 in let allow_duplicate_inlining_cases = EnumConstructor.Map.fold (fun cons f acc -> if Expr.size f <= max_duplicate_inlining_size then EnumConstructor.Set.add cons acc else acc) cases EnumConstructor.Set.empty in let app_cases cons e = simplified_apply (EnumConstructor.Map.find cons cases) [e] [Expr.maybe_ty (Mark.get e)] in let ret_ty = Expr.maybe_ty mark in let rec aux seen_constrs = function | EInj { cons; e; _ }, m -> if EnumConstructor.Set.mem cons seen_constrs then raise Exit; (* Abort inlining to avoid code duplication *) let seen_constrs = if EnumConstructor.Set.mem cons allow_duplicate_inlining_cases then seen_constrs else EnumConstructor.Set.add cons seen_constrs in seen_constrs, (app_cases cons e, Expr.with_ty m ret_ty) | EMatch ({ cases; _ } as ematch), m -> let seen_constrs, cases = EnumConstructor.Map.fold (fun cons case (seen_constrs, acc) -> match case with | EAbs ({ binder; _ } as eabs), m -> let vars, body = Bindlib.unmbind binder in let seen_constrs, body = aux seen_constrs body in let binder = Bindlib.unbox (Expr.bind vars (Expr.rebox body)) in let m = Expr.map_ty (function | TArrow (args, _), pos -> TArrow (args, ret_ty), pos | (TVar _, _) as t -> t | _ -> assert false) m in ( seen_constrs, EnumConstructor.Map.add cons (EAbs { eabs with binder }, m) acc ) | _ -> assert false) cases (seen_constrs, EnumConstructor.Map.empty) in seen_constrs, (EMatch { ematch with cases }, Expr.with_ty m ret_ty) | EIfThenElse { cond; etrue; efalse }, m -> let seen_constrs, etrue = aux seen_constrs etrue in let seen_constrs, efalse = aux seen_constrs efalse in let mark = Expr.with_ty m ret_ty in seen_constrs, (simplified_ifthenelse cond etrue efalse mark, mark) | _ -> raise Exit in try let _seen_contrs, e = aux EnumConstructor.Set.empty match_arg in Mark.remove e with Exit -> (* Optimisation was aborted due a non-terminal or code duplication *) EMatch { e = match_arg; cases; name = enum_name } let rec : type a b. (a, b, 'm) optimizations_ctx -> (a dcalc_lcalc, 'm) gexpr -> (a dcalc_lcalc, 'm) boxed_gexpr = fun ctx e -> (* We proceed bottom-up, first apply on the subterms *) let e = Expr.map ~f:(optimize_expr ctx) ~op:Fun.id e in let mark = Mark.get e in (* Fixme: when removing enclosing expressions, it would be better if we were able to keep the inner position (see the division_by_zero test) *) (* Then reduce the parent node (this is applied through Box.apply, therefore delayed to unbinding time: no need to be concerned about reboxing) *) let reduce (e : (a dcalc_lcalc, 'm) gexpr) = (* Todo: improve the handling of eapp(log,elit) cases here, it obfuscates the matches and the log calls are not preserved, which would be a good property *) match Mark.remove e with | EAppOp { op = Not, _; args = [(ELit (LBool b), _)]; _ } -> (* reduction of logical not *) ELit (LBool (not b)) | EAppOp { op = Or, _; args = [(ELit (LBool b), _); (e, _)]; _ } | EAppOp { op = Or, _; args = [(e, _); (ELit (LBool b), _)]; _ } -> (* reduction of logical or *) if b then ELit (LBool true) else e | EAppOp { op = And, _; args = [(ELit (LBool b), _); (e, _)]; _ } | EAppOp { op = And, _; args = [(e, _); (ELit (LBool b), _)]; _ } -> (* reduction of logical and *) if b then e else ELit (LBool false) | EMatch { name; e; cases } -> simplified_match name e cases mark | EApp { f; args; tys } -> simplified_apply f args tys | EStructAccess { name; field; e = EStruct { name = name1; fields }, _ } when StructName.equal name name1 -> Mark.remove (StructField.Map.find field fields) | EErrorOnEmpty (EPureDefault (e, _), _) -> e | EDefault { excepts; just; cons } -> ( (* TODO: mechanically prove each of these optimizations correct *) let excepts = List.filter (fun except -> Mark.remove except <> EEmpty) excepts (* we can discard the exceptions that are always empty error *) in let value_except_count = List.fold_left (fun nb except -> if Expr.is_value except then nb + 1 else nb) 0 excepts in if value_except_count > 1 then (* at this point we know a conflict error will be triggered so we just feed the expression to the interpreter that will print the beautiful right error message *) let (_ : _ gexpr) = Interpreter.evaluate_expr ctx.decl_ctx Global.En (* Default language to English, no errors should be raised normally so we don't care *) e in assert false else match excepts, just with | [(EDefault { excepts = []; just = ELit (LBool true), _; cons }, _)], _ -> (* No exceptions with condition [true] *) Mark.remove cons | [], cond -> simplified_ifthenelse cond cons (EEmpty, mark) mark | ( [except], ( ( ELit (LBool false) | EAppOp { op = Log _, _; args = [(ELit (LBool false), _)]; _ } ), _ ) ) -> (* Single exception and condition false *) Mark.remove except | excepts, just -> EDefault { excepts; just; cons }) | EIfThenElse { cond; etrue; efalse } -> simplified_ifthenelse cond etrue efalse mark | EAppOp { op = Op.Fold, _; args = [_f; init; (EArray [], _)]; _ } -> (*reduces a fold with an empty list *) Mark.remove init | EAppOp { op = (Map, _) as op; args = [ f1; ( EAppOp { op = Map, _; args = [f2; ls]; tys = [_; ((TArray xty, _) as lsty)]; }, m2 ); ]; tys = [_; (TArray yty, _)]; } -> (* map f (map g l) => map (f o g) l *) let fg = let v = Var.make (match f2 with | EAbs { binder; _ }, _ -> (Bindlib.mbinder_names binder).(0) | _ -> "x") in let mty m = Expr.map_ty (function TArray ty, _ -> ty | _, pos -> Type.any pos) m in let x = Expr.evar v (mty (Mark.get ls)) in Expr.make_ghost_abs [v] (Expr.eapp ~f:(Expr.box f1) ~args:[Expr.eapp ~f:(Expr.box f2) ~args:[x] ~tys:[xty] (mty m2)] ~tys:[yty] (mty mark)) [xty] (Expr.pos e) in let fg = optimize_expr ctx (Expr.unbox fg) in let mapl = Expr.eappop ~op ~args:[fg; Expr.box ls] ~tys:[Expr.maybe_ty (Mark.get fg); lsty] mark in Mark.remove (Expr.unbox mapl) | EAppOp { op = Map, _; args = [ f1; ( EAppOp { op = (Map2, _) as op; args = [f2; ls1; ls2]; tys = [ _; ((TArray x1ty, _) as ls1ty); ((TArray x2ty, _) as ls2ty); ]; }, m2 ); ]; tys = [_; (TArray yty, _)]; } -> (* map f (map2 g l1 l2) => map2 (f o g) l1 l2 *) let fg = let v1, v2 = match f2 with | EAbs { binder; _ }, _ -> let names = Bindlib.mbinder_names binder in Var.make names.(0), Var.make names.(1) | _ -> Var.make "x", Var.make "y" in let mty m = Expr.map_ty (function TArray ty, _ -> ty | _, pos -> Type.any pos) m in let x1 = Expr.evar v1 (mty (Mark.get ls1)) in let x2 = Expr.evar v2 (mty (Mark.get ls2)) in Expr.make_ghost_abs [v1; v2] (Expr.eapp ~f:(Expr.box f1) ~args: [ Expr.eapp ~f:(Expr.box f2) ~args:[x1; x2] ~tys:[x1ty; x2ty] (mty m2); ] ~tys:[yty] (mty mark)) [x1ty; x2ty] (Expr.pos e) in let fg = optimize_expr ctx (Expr.unbox fg) in let mapl = Expr.eappop ~op ~args:[fg; Expr.box ls1; Expr.box ls2] ~tys:[Expr.maybe_ty (Mark.get fg); ls1ty; ls2ty] mark in Mark.remove (Expr.unbox mapl) | EAppOp { op = Op.Fold, _; args = [f; init; (EArray [e'], _)]; tys = [_; tinit; (TArray tx, _)]; } -> (* reduces a fold with one element *) EApp { f; args = [init; e']; tys = [tinit; tx] } | ETuple ((ETupleAccess { e; index = 0; _ }, _) :: el) when List.for_all Fun.id (List.mapi (fun i -> function | ETupleAccess { e = en; index; _ }, _ -> index = i + 1 && Expr.equal en e | _ -> false) el) -> (* identity tuple reconstruction *) Mark.remove e | e -> e in Expr.Box.app1 e reduce mark let optimize_expr : 'm. decl_ctx -> ('a dcalc_lcalc, 'm) gexpr -> ('a dcalc_lcalc, 'm) boxed_gexpr = fun (decl_ctx : decl_ctx) (e : ('a dcalc_lcalc, 'm) gexpr) -> optimize_expr { decl_ctx } e let optimize_program (p : 'm program) : 'm program = Program.map_exprs ~f:(optimize_expr p.decl_ctx) ~varf:(fun v -> v) p let test_iota_reduction_1 () = let x = Var.make "x" in let enumT = EnumName.fresh [] ("t", Pos.void) in let consA = EnumConstructor.fresh ("A", Pos.void) in let consB = EnumConstructor.fresh ("B", Pos.void) in let consC = EnumConstructor.fresh ("C", Pos.void) in let consD = EnumConstructor.fresh ("D", Pos.void) in let nomark = Untyped { pos = Pos.void } in let injA = Expr.einj ~e:(Expr.evar x nomark) ~cons:consA ~name:enumT nomark in let injC = Expr.einj ~e:(Expr.evar x nomark) ~cons:consC ~name:enumT nomark in let injD = Expr.einj ~e:(Expr.evar x nomark) ~cons:consD ~name:enumT nomark in let cases : ('a, 't) boxed_gexpr EnumConstructor.Map.t = EnumConstructor.Map.of_list [ ( consA, Expr.eabs_ghost (Expr.bind [| x |] injC) [Type.any Pos.void] nomark ); ( consB, Expr.eabs_ghost (Expr.bind [| x |] injD) [Type.any Pos.void] nomark ); ] in let matchA = Expr.ematch ~e:injA ~name:enumT ~cases nomark in Alcotest.(check string) "same string" begin[@ocamlformat "disable"] "before=match (A x) with\n\ \ | A x → C x\n\ \ | B x → D x\n\ after=C x" end (Format.asprintf "before=%a\nafter=%a" Expr.format (Expr.unbox matchA) Expr.format (Expr.unbox (optimize_expr Program.empty_ctx (Expr.unbox matchA)))) let cases_of_list l : ('a, 't) boxed_gexpr EnumConstructor.Map.t = EnumConstructor.Map.of_list @@ ListLabels.map l ~f:(fun (cons, f) -> let var = Var.make "x" in ( cons, Expr.eabs_ghost (Expr.bind [| var |] (f var)) [Type.any Pos.void] (Untyped { pos = Pos.void }) )) let test_iota_reduction_2 () = let enumT = EnumName.fresh [] ("t", Pos.void) in let consA = EnumConstructor.fresh ("A", Pos.void) in let consB = EnumConstructor.fresh ("B", Pos.void) in let consC = EnumConstructor.fresh ("C", Pos.void) in let consD = EnumConstructor.fresh ("D", Pos.void) in let nomark = Untyped { pos = Pos.void } in let num n = Expr.elit (LInt (Catala_runtime.integer_of_int n)) nomark in let injAe e = Expr.einj ~e ~cons:consA ~name:enumT nomark in let injBe e = Expr.einj ~e ~cons:consB ~name:enumT nomark in let injCe e = Expr.einj ~e ~cons:consC ~name:enumT nomark in let injDe e = Expr.einj ~e ~cons:consD ~name:enumT nomark in (* let injA x = injAe (Expr.evar x nomark) in *) let injB x = injBe (Expr.evar x nomark) in let injC x = injCe (Expr.evar x nomark) in let injD x = injDe (Expr.evar x nomark) in let matchA = Expr.ematch ~e: (Expr.ematch ~e:(num 1) ~name:enumT ~cases: (cases_of_list [ (consB, fun x -> injBe (injB x)); (consA, fun _x -> injAe (num 20)); ]) nomark) ~name:enumT ~cases:(cases_of_list [consA, injC; consB, injD]) nomark in Alcotest.(check string) "same string " begin[@ocamlformat "disable"] "before=match (match 1 with\n\ \ | A x → A 20\n\ \ | B x → B (B x)) with\n\ \ | A x → C x\n\ \ | B x → D x\n\ after=match 1 with\n\ \ | A x → C 20\n\ \ | B x → D (B x)\n" end (Format.asprintf "before=@[%a@]@.after=%a@." Expr.format (Expr.unbox matchA) Expr.format (Expr.unbox (optimize_expr Program.empty_ctx (Expr.unbox matchA))))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>