package catala

  1. Overview
  2. Docs
Compiler and library for the literate programming language for tax code specification

Install

dune-project
 Dependency

Authors

Maintainers

Sources

1.0.0-alpha.tar.gz
md5=2615968670ac21b1d00386a9b04b3843
sha512=eff292fdd75012f26ce7b17020f5a8374eef37cd4dd6ba60338dfbe89fbcad3443d1b409e44c182b740da9f58dff7e76dcb8ddefe47f9b2b160666d1c6930143

doc/src/catala.shared_ast/optimizations.ml.html

Source file optimizations.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2022 Inria,
   contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux
   <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)
open Catala_utils
open Definitions

type ('a, 'b, 'm) optimizations_ctx = { decl_ctx : decl_ctx }

let binder_vars_used_at_most_once
    (binder :
      ( ('a dcalc_lcalc, 'a dcalc_lcalc, 'm) base_gexpr,
        ('a dcalc_lcalc, 'm) gexpr )
      Bindlib.mbinder) : bool =
  (* fast path: variables not used at all *)
  (not (Array.exists Fun.id (Bindlib.mbinder_occurs binder)))
  ||
  let vars, body = Bindlib.unmbind binder in
  let rec vars_count (e : ('a dcalc_lcalc, 'm) gexpr) : int array =
    match e with
    | EVar v, _ ->
      Array.map (fun vi -> if Bindlib.eq_vars v vi then 1 else 0) vars
    | e ->
      Expr.shallow_fold
        (fun e' acc -> Array.map2 (fun x y -> x + y) (vars_count e') acc)
        e
        (Array.make (Array.length vars) 0)
  in
  not (Array.exists (fun c -> c > 1) (vars_count body))

(* beta reduction when variables not used, and for variable aliases and
   literal *)
let simplified_apply f args tys =
  match f, args with
  | _, [(EAbs { tys = (TClosureEnv, _) :: _; _ }, _)] ->
    (* Never inline lifted closures *)
    EApp { f; args; tys }
  | _, args when List.exists (fun e -> not (Expr.is_pure e)) args ->
    (* Do not inline unpure expressions *)
    EApp { f; args; tys }
  | (EAbs { binder; _ }, _), _
    when binder_vars_used_at_most_once binder
         || List.for_all
              (function (EVar _ | ELit _), _ -> true | _ -> false)
              args ->
    Mark.remove (Bindlib.msubst binder (List.map fst args |> Array.of_list))
  | _ -> EApp { f; args; tys }

let literal_bool = function
  | ELit (LBool b), _
  | EAppOp { op = Log _, _; args = [(ELit (LBool b), _)]; _ }, _ ->
    Some b
  | _ -> None

let simplified_ifthenelse cond etrue efalse m =
  if Expr.equal etrue efalse then Mark.remove etrue
  else
    match literal_bool etrue, literal_bool efalse with
    | Some true, Some false -> Mark.remove cond
    | Some false, Some true ->
      EAppOp
        {
          op = Not, Expr.mark_pos m;
          tys = [TLit TBool, Expr.mark_pos m];
          args = [cond];
        }
    | Some true, Some true | Some false, Some false -> Mark.remove etrue
    | _ -> (
      match literal_bool cond with
      | Some true -> Mark.remove etrue
      | Some false -> Mark.remove efalse
      | None -> EIfThenElse { cond; etrue; efalse })

(* builds a [EMatch] term, flattening nested matches/if-then-else: the matching
   arg branching are explored, and if they all lead to enum constructor
   literals, the surrounding match cases are inlined. Code duplication is
   detected and aborts the inlining. *)
let simplified_match enum_name match_arg cases mark =
  let max_duplicate_inlining_size = 3 in
  let allow_duplicate_inlining_cases =
    EnumConstructor.Map.fold
      (fun cons f acc ->
        if Expr.size f <= max_duplicate_inlining_size then
          EnumConstructor.Set.add cons acc
        else acc)
      cases EnumConstructor.Set.empty
  in
  let app_cases cons e =
    simplified_apply
      (EnumConstructor.Map.find cons cases)
      [e]
      [Expr.maybe_ty (Mark.get e)]
  in
  let ret_ty = Expr.maybe_ty mark in
  let rec aux seen_constrs = function
    | EInj { cons; e; _ }, m ->
      if EnumConstructor.Set.mem cons seen_constrs then raise Exit;
      (* Abort inlining to avoid code duplication *)
      let seen_constrs =
        if EnumConstructor.Set.mem cons allow_duplicate_inlining_cases then
          seen_constrs
        else EnumConstructor.Set.add cons seen_constrs
      in
      seen_constrs, (app_cases cons e, Expr.with_ty m ret_ty)
    | EMatch ({ cases; _ } as ematch), m ->
      let seen_constrs, cases =
        EnumConstructor.Map.fold
          (fun cons case (seen_constrs, acc) ->
            match case with
            | EAbs ({ binder; _ } as eabs), m ->
              let vars, body = Bindlib.unmbind binder in
              let seen_constrs, body = aux seen_constrs body in
              let binder = Bindlib.unbox (Expr.bind vars (Expr.rebox body)) in
              let m =
                Expr.map_ty
                  (function
                    | TArrow (args, _), pos -> TArrow (args, ret_ty), pos
                    | (TVar _, _) as t -> t
                    | _ -> assert false)
                  m
              in
              ( seen_constrs,
                EnumConstructor.Map.add cons (EAbs { eabs with binder }, m) acc
              )
            | _ -> assert false)
          cases
          (seen_constrs, EnumConstructor.Map.empty)
      in
      seen_constrs, (EMatch { ematch with cases }, Expr.with_ty m ret_ty)
    | EIfThenElse { cond; etrue; efalse }, m ->
      let seen_constrs, etrue = aux seen_constrs etrue in
      let seen_constrs, efalse = aux seen_constrs efalse in
      let mark = Expr.with_ty m ret_ty in
      seen_constrs, (simplified_ifthenelse cond etrue efalse mark, mark)
    | _ -> raise Exit
  in
  try
    let _seen_contrs, e = aux EnumConstructor.Set.empty match_arg in
    Mark.remove e
  with Exit ->
    (* Optimisation was aborted due a non-terminal or code duplication *)
    EMatch { e = match_arg; cases; name = enum_name }

let rec optimize_expr :
    type a b.
    (a, b, 'm) optimizations_ctx ->
    (a dcalc_lcalc, 'm) gexpr ->
    (a dcalc_lcalc, 'm) boxed_gexpr =
 fun ctx e ->
  (* We proceed bottom-up, first apply on the subterms *)
  let e = Expr.map ~f:(optimize_expr ctx) ~op:Fun.id e in
  let mark = Mark.get e in
  (* Fixme: when removing enclosing expressions, it would be better if we were
     able to keep the inner position (see the division_by_zero test) *)
  (* Then reduce the parent node (this is applied through Box.apply, therefore
     delayed to unbinding time: no need to be concerned about reboxing) *)
  let reduce (e : (a dcalc_lcalc, 'm) gexpr) =
    (* Todo: improve the handling of eapp(log,elit) cases here, it obfuscates
       the matches and the log calls are not preserved, which would be a good
       property *)
    match Mark.remove e with
    | EAppOp { op = Not, _; args = [(ELit (LBool b), _)]; _ } ->
      (* reduction of logical not *)
      ELit (LBool (not b))
    | EAppOp { op = Or, _; args = [(ELit (LBool b), _); (e, _)]; _ }
    | EAppOp { op = Or, _; args = [(e, _); (ELit (LBool b), _)]; _ } ->
      (* reduction of logical or *)
      if b then ELit (LBool true) else e
    | EAppOp { op = And, _; args = [(ELit (LBool b), _); (e, _)]; _ }
    | EAppOp { op = And, _; args = [(e, _); (ELit (LBool b), _)]; _ } ->
      (* reduction of logical and *)
      if b then e else ELit (LBool false)
    | EMatch { name; e; cases } -> simplified_match name e cases mark
    | EApp { f; args; tys } -> simplified_apply f args tys
    | EStructAccess { name; field; e = EStruct { name = name1; fields }, _ }
      when StructName.equal name name1 ->
      Mark.remove (StructField.Map.find field fields)
    | EErrorOnEmpty (EPureDefault (e, _), _) -> e
    | EDefault { excepts; just; cons } -> (
      (* TODO: mechanically prove each of these optimizations correct *)
      let excepts =
        List.filter (fun except -> Mark.remove except <> EEmpty) excepts
        (* we can discard the exceptions that are always empty error *)
      in
      let value_except_count =
        List.fold_left
          (fun nb except -> if Expr.is_value except then nb + 1 else nb)
          0 excepts
      in
      if value_except_count > 1 then
        (* at this point we know a conflict error will be triggered so we just
           feed the expression to the interpreter that will print the beautiful
           right error message *)
        let (_ : _ gexpr) =
          Interpreter.evaluate_expr ctx.decl_ctx Global.En
            (* Default language to English, no errors should be raised normally
               so we don't care *)
            e
        in
        assert false
      else
        match excepts, just with
        | [(EDefault { excepts = []; just = ELit (LBool true), _; cons }, _)], _
          ->
          (* No exceptions with condition [true] *)
          Mark.remove cons
        | [], cond -> simplified_ifthenelse cond cons (EEmpty, mark) mark
        | ( [except],
            ( ( ELit (LBool false)
              | EAppOp { op = Log _, _; args = [(ELit (LBool false), _)]; _ } ),
              _ ) ) ->
          (* Single exception and condition false *)
          Mark.remove except
        | excepts, just -> EDefault { excepts; just; cons })
    | EIfThenElse { cond; etrue; efalse } ->
      simplified_ifthenelse cond etrue efalse mark
    | EAppOp { op = Op.Fold, _; args = [_f; init; (EArray [], _)]; _ } ->
      (*reduces a fold with an empty list *)
      Mark.remove init
    | EAppOp
        {
          op = (Map, _) as op;
          args =
            [
              f1;
              ( EAppOp
                  {
                    op = Map, _;
                    args = [f2; ls];
                    tys = [_; ((TArray xty, _) as lsty)];
                  },
                m2 );
            ];
          tys = [_; (TArray yty, _)];
        } ->
      (* map f (map g l) => map (f o g) l *)
      let fg =
        let v =
          Var.make
            (match f2 with
            | EAbs { binder; _ }, _ -> (Bindlib.mbinder_names binder).(0)
            | _ -> "x")
        in
        let mty m =
          Expr.map_ty (function TArray ty, _ -> ty | _, pos -> Type.any pos) m
        in
        let x = Expr.evar v (mty (Mark.get ls)) in
        Expr.make_ghost_abs [v]
          (Expr.eapp ~f:(Expr.box f1)
             ~args:[Expr.eapp ~f:(Expr.box f2) ~args:[x] ~tys:[xty] (mty m2)]
             ~tys:[yty] (mty mark))
          [xty] (Expr.pos e)
      in
      let fg = optimize_expr ctx (Expr.unbox fg) in
      let mapl =
        Expr.eappop ~op
          ~args:[fg; Expr.box ls]
          ~tys:[Expr.maybe_ty (Mark.get fg); lsty]
          mark
      in
      Mark.remove (Expr.unbox mapl)
    | EAppOp
        {
          op = Map, _;
          args =
            [
              f1;
              ( EAppOp
                  {
                    op = (Map2, _) as op;
                    args = [f2; ls1; ls2];
                    tys =
                      [
                        _;
                        ((TArray x1ty, _) as ls1ty);
                        ((TArray x2ty, _) as ls2ty);
                      ];
                  },
                m2 );
            ];
          tys = [_; (TArray yty, _)];
        } ->
      (* map f (map2 g l1 l2) => map2 (f o g) l1 l2 *)
      let fg =
        let v1, v2 =
          match f2 with
          | EAbs { binder; _ }, _ ->
            let names = Bindlib.mbinder_names binder in
            Var.make names.(0), Var.make names.(1)
          | _ -> Var.make "x", Var.make "y"
        in
        let mty m =
          Expr.map_ty (function TArray ty, _ -> ty | _, pos -> Type.any pos) m
        in
        let x1 = Expr.evar v1 (mty (Mark.get ls1)) in
        let x2 = Expr.evar v2 (mty (Mark.get ls2)) in
        Expr.make_ghost_abs [v1; v2]
          (Expr.eapp ~f:(Expr.box f1)
             ~args:
               [
                 Expr.eapp ~f:(Expr.box f2) ~args:[x1; x2] ~tys:[x1ty; x2ty]
                   (mty m2);
               ]
             ~tys:[yty] (mty mark))
          [x1ty; x2ty] (Expr.pos e)
      in
      let fg = optimize_expr ctx (Expr.unbox fg) in
      let mapl =
        Expr.eappop ~op
          ~args:[fg; Expr.box ls1; Expr.box ls2]
          ~tys:[Expr.maybe_ty (Mark.get fg); ls1ty; ls2ty]
          mark
      in
      Mark.remove (Expr.unbox mapl)
    | EAppOp
        {
          op = Op.Fold, _;
          args = [f; init; (EArray [e'], _)];
          tys = [_; tinit; (TArray tx, _)];
        } ->
      (* reduces a fold with one element *)
      EApp { f; args = [init; e']; tys = [tinit; tx] }
    | ETuple ((ETupleAccess { e; index = 0; _ }, _) :: el)
      when List.for_all Fun.id
             (List.mapi
                (fun i -> function
                  | ETupleAccess { e = en; index; _ }, _ ->
                    index = i + 1 && Expr.equal en e
                  | _ -> false)
                el) ->
      (* identity tuple reconstruction *)
      Mark.remove e
    | e -> e
  in
  Expr.Box.app1 e reduce mark

let optimize_expr :
      'm.
      decl_ctx -> ('a dcalc_lcalc, 'm) gexpr -> ('a dcalc_lcalc, 'm) boxed_gexpr
    =
 fun (decl_ctx : decl_ctx) (e : ('a dcalc_lcalc, 'm) gexpr) ->
  optimize_expr { decl_ctx } e

let optimize_program (p : 'm program) : 'm program =
  Program.map_exprs ~f:(optimize_expr p.decl_ctx) ~varf:(fun v -> v) p

let test_iota_reduction_1 () =
  let x = Var.make "x" in
  let enumT = EnumName.fresh [] ("t", Pos.void) in
  let consA = EnumConstructor.fresh ("A", Pos.void) in
  let consB = EnumConstructor.fresh ("B", Pos.void) in
  let consC = EnumConstructor.fresh ("C", Pos.void) in
  let consD = EnumConstructor.fresh ("D", Pos.void) in
  let nomark = Untyped { pos = Pos.void } in
  let injA = Expr.einj ~e:(Expr.evar x nomark) ~cons:consA ~name:enumT nomark in
  let injC = Expr.einj ~e:(Expr.evar x nomark) ~cons:consC ~name:enumT nomark in
  let injD = Expr.einj ~e:(Expr.evar x nomark) ~cons:consD ~name:enumT nomark in
  let cases : ('a, 't) boxed_gexpr EnumConstructor.Map.t =
    EnumConstructor.Map.of_list
      [
        ( consA,
          Expr.eabs_ghost (Expr.bind [| x |] injC) [Type.any Pos.void] nomark );
        ( consB,
          Expr.eabs_ghost (Expr.bind [| x |] injD) [Type.any Pos.void] nomark );
      ]
  in
  let matchA = Expr.ematch ~e:injA ~name:enumT ~cases nomark in
  Alcotest.(check string)
    "same string"
    begin[@ocamlformat "disable"]
      "before=match (A x) with\n\
      \       | A x → C x\n\
      \       | B x → D x\n\
       after=C x"
    end
    (Format.asprintf "before=%a\nafter=%a" Expr.format (Expr.unbox matchA)
       Expr.format
       (Expr.unbox (optimize_expr Program.empty_ctx (Expr.unbox matchA))))

let cases_of_list l : ('a, 't) boxed_gexpr EnumConstructor.Map.t =
  EnumConstructor.Map.of_list
  @@ ListLabels.map l ~f:(fun (cons, f) ->
         let var = Var.make "x" in
         ( cons,
           Expr.eabs_ghost
             (Expr.bind [| var |] (f var))
             [Type.any Pos.void]
             (Untyped { pos = Pos.void }) ))

let test_iota_reduction_2 () =
  let enumT = EnumName.fresh [] ("t", Pos.void) in
  let consA = EnumConstructor.fresh ("A", Pos.void) in
  let consB = EnumConstructor.fresh ("B", Pos.void) in
  let consC = EnumConstructor.fresh ("C", Pos.void) in
  let consD = EnumConstructor.fresh ("D", Pos.void) in

  let nomark = Untyped { pos = Pos.void } in

  let num n = Expr.elit (LInt (Catala_runtime.integer_of_int n)) nomark in

  let injAe e = Expr.einj ~e ~cons:consA ~name:enumT nomark in
  let injBe e = Expr.einj ~e ~cons:consB ~name:enumT nomark in
  let injCe e = Expr.einj ~e ~cons:consC ~name:enumT nomark in
  let injDe e = Expr.einj ~e ~cons:consD ~name:enumT nomark in

  (* let injA x = injAe (Expr.evar x nomark) in *)
  let injB x = injBe (Expr.evar x nomark) in
  let injC x = injCe (Expr.evar x nomark) in
  let injD x = injDe (Expr.evar x nomark) in

  let matchA =
    Expr.ematch
      ~e:
        (Expr.ematch ~e:(num 1) ~name:enumT
           ~cases:
             (cases_of_list
                [
                  (consB, fun x -> injBe (injB x));
                  (consA, fun _x -> injAe (num 20));
                ])
           nomark)
      ~name:enumT
      ~cases:(cases_of_list [consA, injC; consB, injD])
      nomark
  in
  Alcotest.(check string)
    "same string "
    begin[@ocamlformat "disable"]
      "before=match (match 1 with\n\
      \              | A x → A 20\n\
      \              | B x → B (B x)) with\n\
      \       | A x → C x\n\
      \       | B x → D x\n\
       after=match 1 with\n\
      \      | A x → C 20\n\
      \      | B x → D (B x)\n"
    end
    (Format.asprintf "before=@[%a@]@.after=%a@." Expr.format (Expr.unbox matchA)
       Expr.format
       (Expr.unbox (optimize_expr Program.empty_ctx (Expr.unbox matchA))))