package caisar
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
include Graph.Sig.I
with type V.t = (Base.float, Stdlib.Bigarray.float64_elt) Node.t
and type V.label = (Base.float, Stdlib.Bigarray.float64_elt) Node.t
and type E.t =
(Base.float, Stdlib.Bigarray.float64_elt) Node.t
* Edge.t
* (Base.float, Stdlib.Bigarray.float64_elt) Node.t
and type E.label = Edge.t
module V : sig ... end
type vertex = V.t
module E : sig ... end
type edge = E.t
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
val create : ?size:int -> unit -> t
val clear : t -> unit
val init_cfg : t
preds_names g v
returns a list of names of predecessors nodes
succs_names g v
returns a list of names of predecessors nodes
input_node g
returns the nodes considered as describing the inputs of the neural network.
data_node_of n
returns one node containing a tensor * data among the predecessors of n
infer_shape g n sh o_b
returns the inferred shape of the output of node n
in NIER g
with input shape sh
. Shape inference is made using the node operator and its predecessors shapes. o_b
is true when performing backward propagation, to choose which matrix size to consider.
val infer_shape :
t ->
vertex ->
Node.shape ->
on_backward:Base.bool ->
Node.shape
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>