package biocaml
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
The OCaml Bioinformatics Library
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.11.0.tar.gz
md5=486aeb3e552dabae85839e2af30d6c52
sha512=4ed2df0b7cbd80bd6e29bd8fee9d2dacd9379ad0f4ff142bd8e16ade3f1507f6cc7cbe4c614943b8feb8fa4705935695cb458606b0da813dbf255b1e566a43cf
doc/biocaml.ez/Biocaml_ez/Lines/MakeIO/argument-1-Future/Deferred/index.html
Module Future.Deferred
include Core_kernel.Monad.S
t >>= f returns a computation that sequences the computations represented by two monad elements. The resulting computation first does t to yield a value v, and then runs the computation returned by f v.
module Monad_infix : sig ... endval return : 'a -> 'a treturn v returns the (trivial) computation that returns v.
ignore_m t is map t ~f:(fun _ -> ()). ignore_m used to be called ignore, but we decided that was a bad name, because it shadowed the widely used Caml.ignore. Some monads still do let ignore = ignore_m for historical reasons.
Like all, but ensures that every monadic value in the list produces a unit value, all of which are discarded rather than being collected into a list.
module Let_syntax : sig ... endThese are convenient to have in scope when programming with a monad:
val unit : unit tmodule List : sig ... endmodule Or_error : sig ... end sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>