package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_sse_loader/ir.ml.html
Source file ir.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) module StrTbl = Basic_types.String.Htbl module IntTbl = Hmap.Make (struct type t = int let hash = Fun.id let compare = ( - ) end) module IntSet = Basic_types.Integers.Int.Set module Var = struct module Tag = Dba.Var.Tag include Dba_types.Var let collect = Dba_types.Expr.collect_variables end type builtin = .. type builtin += Inline of Dhunk.t | EndOfHook let (pp_builtin, register_builtin_printer) : (Format.formatter -> builtin -> unit) * ((Format.formatter -> builtin -> bool) -> unit) = let rec pp_builtin ppf x printers = match printers with | [] -> Format.pp_print_string ppf "unknown builtin" | printer :: printers -> if not (printer ppf x) then pp_builtin ppf x printers in let builtin_printers = ref [ (fun ppf builtin -> match builtin with | EndOfHook -> Format.pp_print_string ppf "end of hook"; true | _ -> false); ] in ( (fun ppf x -> pp_builtin ppf x !builtin_printers), fun printer -> builtin_printers := printer :: !builtin_printers ) type 'a opcode = | Nop : [ `Fallthrough ] opcode | Instruction : Instruction.t -> [< `Label | `Fallthrough ] opcode | Hook : { addr : Virtual_address.t; info : string; } -> [< `Label | `Fallthrough ] opcode | Assign : { var : Dba.Var.t; rval : Dba.Expr.t } -> [ `Fallthrough ] opcode | Clobber : Dba.Var.t -> [ `Fallthrough ] opcode | Forget : Dba.Var.t -> [ `Fallthrough ] opcode | Load : { var : Dba.Var.t; base : string option; dir : Machine.endianness; addr : Dba.Expr.t; } -> [ `Fallthrough ] opcode | Store : { base : string option; dir : Machine.endianness; addr : Dba.Expr.t; rval : Dba.Expr.t; } -> [ `Fallthrough ] opcode | Symbolize : Dba.Var.t -> [ `Fallthrough ] opcode | Assume : Dba.Expr.t -> [ `Fallthrough ] opcode | Assert : Dba.Expr.t -> [ `Fallthrough ] opcode | Builtin : builtin -> [< `Fallthrough | `Terminator ] opcode | Goto : { target : Virtual_address.t; tag : Dba.tag; } -> [< `Fallthrough | `Terminator ] opcode | Jump : { target : Dba.Expr.t; tag : Dba.tag } -> [ `Terminator ] opcode | Halt : [ `Terminator ] opcode | Cut : [ `Terminator ] opcode | Die : string -> [ `Terminator ] opcode and label = [ `Label ] opcode and fallthrough = [ `Fallthrough ] opcode and terminator = [ `Terminator ] opcode let pp_opcode : type a. Format.formatter -> a opcode -> unit = fun ppf fallthrough -> match fallthrough with | Nop -> Format.pp_print_string ppf "nop" | Instruction inst -> Format.fprintf ppf "%a %a" Virtual_address.pp (Instruction.address inst) Mnemonic.pp (Instruction.mnemonic inst) | Hook { addr; info } -> Format.fprintf ppf "%a %s" Virtual_address.pp addr info | Assign { var = { name; _ }; rval } -> Format.fprintf ppf "%s := %a" name Dba_printer.Ascii.pp_bl_term rval | Clobber { name; _ } -> Format.fprintf ppf "%s := undef" name | Forget { name; _ } -> Format.fprintf ppf "%s := undef" name | Load { var = { name; size; _ }; base; dir; addr } -> Format.fprintf ppf "%s := %s[%a%s, %d]" name (Option.fold ~none:"@" ~some:Fun.id base) Dba_printer.Ascii.pp_bl_term addr (match dir with LittleEndian -> "" | BigEndian -> ", ->") (size / 8) | Store { base; dir; addr; rval } -> Format.fprintf ppf "%s[%a%s, %d] := %a" (Option.fold ~none:"@" ~some:Fun.id base) Dba_printer.Ascii.pp_bl_term addr (match dir with LittleEndian -> "" | BigEndian -> ", ->") (Dba.Expr.size_of rval / 8) Dba_printer.Ascii.pp_bl_term rval | Symbolize { name; _ } -> Format.fprintf ppf "%s := nondet" name | Assume test -> Format.fprintf ppf "assume %a" Dba_printer.Ascii.pp_bl_term test | Assert test -> Format.fprintf ppf "assert %a" Dba_printer.Ascii.pp_bl_term test | Goto { target; _ } -> Format.fprintf ppf "jump at %a" Virtual_address.pp target | Jump { target; _ } -> Format.fprintf ppf "jump at %a" Dba_printer.Ascii.pp_bl_term target | Halt -> Format.pp_print_string ppf "halt" | Cut -> Format.pp_print_string ppf "cut" | Die msg -> Format.fprintf ppf "die(%S)" msg | Builtin x -> pp_builtin ppf x type node = | Fallthrough of { label : label; kind : fallthrough; succ : int } | Branch of { label : label; test : Dba.Expr.t; target : int; fallthrough : int; } | Terminator of { label : label; kind : terminator } let pp_node ppf node = match node with | Fallthrough { kind; _ } -> pp_opcode ppf kind | Branch { test; target; fallthrough; _ } -> Format.fprintf ppf "if %a then goto %d else goto %d" Dba_printer.Ascii.pp_bl_term test target fallthrough | Terminator { kind; _ } -> pp_opcode ppf kind let label_of : node -> label = function | Fallthrough { label; _ } | Branch { label; _ } | Terminator { label; _ } -> label type stmt = | Nop | Label of string (** [label]: *) | Opcode of fallthrough | If of Dba.Expr.t * string (** if [rval] then goto [label] *) | Goto of string (** goto [label] *) | End of terminator module type GRAPH = sig include Graph.Sig.G with type V.t = int and type E.t = int * bool * int val node : t -> vertex -> node val fold_entries : (vertex -> 'a -> 'a) -> t -> 'a -> 'a val fold_exits : (vertex -> 'a -> 'a) -> t -> 'a -> 'a val iter_entries : (vertex -> unit) -> t -> unit val iter_exits : (vertex -> unit) -> t -> unit end module type INSTRUMENT = sig type t type vertex val insert_before : t -> vertex -> ?label:label -> fallthrough -> unit val insert_before_v : t -> vertex -> ?label:label -> fallthrough -> vertex val insert_list_before : t -> vertex -> ?label:label -> fallthrough list -> unit val insert_list_before_v : t -> vertex -> ?label:label -> fallthrough list -> vertex end module Graph = struct type t = { mutable n : int; mutable nodes : node IntTbl.t; mutable preds : int list IntTbl.t; mutable entries : IntSet.t; mutable exits : IntSet.t; } let length : t -> int = fun { n; _ } -> n type vertex = int let add_node : t -> vertex -> node -> unit = fun t vertex node -> (match IntTbl.find vertex t.nodes with | exception Not_found -> t.n <- t.n + 1 | Fallthrough { succ; _ } -> t.preds <- IntTbl.add succ (List.filter (( != ) vertex) (IntTbl.find succ t.preds)) t.preds | Branch { target; fallthrough; _ } -> t.preds <- IntTbl.add target (List.filter (( != ) vertex) (IntTbl.find target t.preds)) t.preds; t.preds <- IntTbl.add fallthrough (List.filter (( != ) vertex) (IntTbl.find fallthrough t.preds)) t.preds | Terminator _ -> t.exits <- IntSet.remove vertex t.exits); t.nodes <- IntTbl.add vertex node t.nodes; if not (IntTbl.mem vertex t.preds) then t.preds <- IntTbl.add vertex [] t.preds; match node with | Fallthrough { succ; _ } -> t.preds <- IntTbl.add succ (vertex :: (try IntTbl.find succ t.preds with Not_found -> [])) t.preds | Branch { target; fallthrough; _ } -> t.preds <- IntTbl.add target (vertex :: (try IntTbl.find target t.preds with Not_found -> [])) t.preds; t.preds <- IntTbl.add fallthrough (vertex :: (try IntTbl.find fallthrough t.preds with Not_found -> [])) t.preds | Terminator _ -> t.exits <- IntSet.add vertex t.exits let node { nodes; _ } vertex = IntTbl.find vertex nodes module V : Graph.Sig.VERTEX with type t = int = struct type t = vertex let compare = ( - ) let equal = ( == ) let hash = Fun.id type label = t let create = Fun.id let label = Fun.id end module E : Graph.Sig.EDGE with type t = V.t * bool * V.t and type vertex = V.t = struct type t = V.t * bool * V.t let compare = compare type vertex = V.t let src (vertex, _, _) = vertex let dst (_, _, vertex) = vertex type label = bool let create src branch dst = (src, branch, dst) let label (_, branch, _) = branch end type edge = E.t let is_directed = true let is_empty t = length t = 0 let nb_vertex = length let nb_edges { preds; _ } = IntTbl.fold (fun _ preds n -> n + List.length preds) preds 0 let out_degree { nodes; _ } vertex = match IntTbl.find vertex nodes with | Terminator _ -> 0 | Fallthrough _ -> 1 | Branch _ -> 2 let in_degree { preds; _ } vertex = List.length (IntTbl.find vertex preds) let mem_vertex { nodes; _ } vertex = IntTbl.mem vertex nodes let mem_edge { nodes; _ } src dst = match IntTbl.find src nodes with | Fallthrough { succ; _ } -> succ = dst | Branch { target; fallthrough; _ } -> target = dst || fallthrough = dst | Terminator _ -> false let mem_edge_e { nodes; _ } (src, branch, dst) = match IntTbl.find src nodes with | Fallthrough { succ; _ } -> succ = dst | Branch { target; fallthrough; _ } -> (branch && target = dst) || ((not branch) && fallthrough = dst) | Terminator _ -> false let find_edge { nodes; _ } src dst = match IntTbl.find src nodes with | (Fallthrough { succ; _ } | Branch { fallthrough = succ; _ }) when succ = dst -> (src, false, dst) | Branch { target; _ } when target = dst -> (src, true, dst) | Fallthrough _ | Branch _ | Terminator _ -> raise Not_found let find_all_edges t src dst = try [ find_edge t src dst ] with Not_found -> [] let succ { nodes; _ } vertex = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> [ succ ] | Branch { target; fallthrough; _ } -> [ target; fallthrough ] | Terminator _ -> [] let pred { preds; _ } vertex = IntTbl.find vertex preds let succ_e { nodes; _ } vertex = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> [ (vertex, false, succ) ] | Branch { target; fallthrough; _ } -> [ (vertex, true, target); (vertex, false, fallthrough) ] | Terminator _ -> [] let pred_e t vertex = List.map (fun src -> find_edge t src vertex) (pred t vertex) let iter_vertex f t = let last = length t - 1 in for i = 0 to last do f i done let fold_entries : (vertex -> 'a -> 'a) -> t -> 'a -> 'a = fun f { entries; _ } a -> IntSet.fold f entries a let fold_exits : (vertex -> 'a -> 'a) -> t -> 'a -> 'a = fun f { exits; _ } a -> IntSet.fold f exits a let iter_entries : (vertex -> unit) -> t -> unit = fun f { entries; _ } -> IntSet.iter f entries let iter_exits : (vertex -> unit) -> t -> unit = fun f { exits; _ } -> IntSet.iter f exits let fold_vertex f { nodes; _ } data = IntTbl.fold (fun vertex _ -> f vertex) nodes data let iter_edges f { nodes; _ } = IntTbl.iter (fun vertex node -> match node with | Fallthrough { succ; _ } -> f vertex succ | Branch { target; fallthrough; _ } -> f vertex target; f vertex fallthrough | Terminator _ -> ()) nodes let fold_edges f { nodes; _ } data = IntTbl.fold (fun vertex node data -> match node with | Fallthrough { succ; _ } -> f vertex succ data | Branch { target; fallthrough; _ } -> f vertex target (f vertex fallthrough data) | Terminator _ -> data) nodes data let iter_edges_e f { nodes; _ } = IntTbl.iter (fun vertex node -> match node with | Fallthrough { succ; _ } -> f (vertex, false, succ) | Branch { target; fallthrough; _ } -> f (vertex, true, target); f (vertex, false, fallthrough) | Terminator _ -> ()) nodes let fold_edges_e f { nodes; _ } data = IntTbl.fold (fun vertex node data -> match node with | Fallthrough { succ; _ } -> f (vertex, false, succ) data | Branch { target; fallthrough; _ } -> f (vertex, true, target) (f (vertex, false, fallthrough) data) | Terminator _ -> data) nodes data let shuffle f node = match node with | Fallthrough { label; kind; succ } -> Fallthrough { label; kind; succ = f succ } | Branch { label; test; target; fallthrough } -> Branch { label; test; target = f target; fallthrough = f fallthrough } | Terminator _ -> node let map_vertex f r = { n = r.n; nodes = IntTbl.fold (fun vertex node nodes -> IntTbl.add (f vertex) (shuffle f node) nodes) r.nodes IntTbl.empty; preds = IntTbl.fold (fun vertex pred preds -> IntTbl.add (f vertex) (List.map f pred) preds) r.preds IntTbl.empty; exits = IntSet.map f r.exits; entries = IntSet.map f r.entries; } let iter_succ f { nodes; _ } vertex = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> f succ | Branch { target; fallthrough; _ } -> f target; f fallthrough | Terminator _ -> () let iter_pred f { preds; _ } vertex = List.iter f (IntTbl.find vertex preds) let fold_succ f { nodes; _ } vertex data = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> f succ data | Branch { target; fallthrough; _ } -> f target (f fallthrough data) | Terminator _ -> data let fold_pred f { preds; _ } vertex data = List.fold_left (Fun.flip f) data (IntTbl.find vertex preds) let iter_succ_e f { nodes; _ } vertex = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> f (vertex, false, succ) | Branch { target; fallthrough; _ } -> f (vertex, true, target); f (vertex, false, fallthrough) | Terminator _ -> () let iter_pred_e f t vertex = List.iter (fun src -> f (find_edge t src vertex)) (IntTbl.find vertex t.preds) let fold_succ_e f { nodes; _ } vertex data = match IntTbl.find vertex nodes with | Fallthrough { succ; _ } -> f (vertex, false, succ) data | Branch { target; fallthrough; _ } -> f (vertex, true, target) (f (vertex, false, fallthrough) data) | Terminator _ -> data let fold_pred_e f t vertex data = List.fold_left (fun data src -> f (find_edge t src vertex) data) data (IntTbl.find vertex t.preds) let insert_before_v : t -> vertex -> ?label:label -> fallthrough -> vertex = fun t vertex ?label kind -> let cur = length t and label = match label with None -> label_of (node t vertex) | Some label -> label in iter_pred (fun pred -> add_node t pred (shuffle (fun i -> if i = vertex then cur else i) (node t pred))) t vertex; add_node t cur (Fallthrough { label; kind; succ = vertex }); cur let insert_before : t -> vertex -> ?label:label -> fallthrough -> unit = fun t vertex ?label kind -> ignore (insert_before_v t vertex ?label kind) let insert_list_before_v : t -> vertex -> ?label:label -> fallthrough list -> vertex = fun t vertex ?label -> function | [] -> vertex | kind :: tl -> let vertex' = insert_before_v t vertex ?label kind in List.iter (fun kind -> insert_before t vertex ?label kind) tl; vertex' let insert_list_before : t -> vertex -> ?label:label -> fallthrough list -> unit = fun t vertex ?label list -> ignore (insert_list_before_v t vertex ?label list) let extract_loads : ((vertex * Basic_types.endianness * Dba.Expr.t * string option) * Var.t) list -> Dba.Expr.t -> ((vertex * Basic_types.endianness * Dba.Expr.t * string option) * Var.t) list * Dba.Expr.t = let rec fold : ((vertex * Basic_types.endianness * Dba.Expr.t * string option) * Var.t) list -> Dba.Expr.t -> ((vertex * Basic_types.endianness * Dba.Expr.t * string option) * Var.t) list * Dba.Expr.t = fun m (e : Dba.Expr.t) -> match e with | Cst _ -> (m, e) | Var _ -> (m, e) | Load (sz, dir, addr, base) -> let m', addr' = fold m addr in let k = (sz, dir, addr', base) in let v = try List.assoc k m' with Not_found -> Dba.Var.( create (Printf.sprintf "$$%d" (List.length m')) ~bitsize:(Size.Bit.create (8 * sz)) ~tag:Tag.Temp) in ((k, v) :: m', Dba.Expr.v v) | Unary (o, x) -> let m', x' = fold m x in let e' = if x == x' then e else Dba.Expr.unary o x' in (m', e') | Binary (o, x, y) -> let m', x' = fold m x in let m', y' = fold m' y in let e' = if x == x' && y == y' then e else Dba.Expr.binary o x' y' in (m', e') | Ite (c, x, y) -> let m', c' = fold m c in let m', x' = fold m' x in let m', y' = fold m' y in let e' = if c == c' && x == x' && y == y' then e else Dba.Expr.ite c' x' y' in (m', e') in fold let define_loads : [ `Fallthrough ] opcode -> ((vertex * Basic_types.endianness * Dba.Expr.t * string option) * Var.t) list * [ `Fallthrough ] opcode = fun kind -> match kind with | Nop | Instruction _ | Hook _ | Clobber _ | Forget _ | Symbolize _ | Builtin _ | Goto _ -> ([], kind) | Assign { var; rval = Load (_, dir, addr, base) } -> ( match extract_loads [] addr with | [], _ -> ([], Load { var; base; dir; addr }) | loads, addr -> (loads, Load { var; base; dir; addr })) | Assign { var; rval } -> ( match extract_loads [] rval with | [], _ -> ([], kind) | loads, rval -> (loads, Assign { var; rval })) | Load { var; base; dir; addr } -> ( match extract_loads [] addr with | [], _ -> ([], kind) | loads, addr -> (loads, Load { var; base; dir; addr })) | Store { base; dir; addr; rval } -> ( let loads, addr = extract_loads [] addr in match extract_loads loads rval with | [], _ -> ([], kind) | loads, rval -> (loads, Store { base; dir; addr; rval })) | Assume test -> ( match extract_loads [] test with | [], _ -> ([], kind) | loads, test -> (loads, Assume test)) | Assert test -> ( match extract_loads [] test with | [], _ -> ([], kind) | loads, test -> (loads, Assert test)) let define_load : t -> vertex -> unit = fun t vertex -> match node t vertex with | Fallthrough { label; kind; succ } -> ( match define_loads kind with | [], kind' when kind == kind' -> () | loads, kind -> add_node t vertex (Fallthrough { label; kind; succ }); List.fold_right (fun ((_, dir, addr, base), var) () -> insert_before t vertex ~label (Load { var; base; dir; addr }); insert_before t succ ~label (Forget var)) loads ()) | Branch { label; test; target; fallthrough } -> ( match extract_loads [] test with | [], _ -> () | loads, test -> add_node t vertex (Branch { label; test; target; fallthrough }); List.fold_right (fun ((_, dir, addr, base), var) () -> insert_before t vertex ~label (Load { var; base; dir; addr }); insert_before t target ~label (Forget var); insert_before t fallthrough ~label (Forget var)) loads ()) | Terminator { label; kind = Jump { target; tag } } -> ( match extract_loads [] target with | [], _ -> () | loads, target -> add_node t vertex (Terminator { label; kind = Jump { target; tag } }); List.fold_right (fun ((_, dir, addr, base), var) () -> insert_before t vertex ~label (Load { var; base; dir; addr })) loads ()) | Terminator _ -> () let entropy = Printf.sprintf "%%entropy%%%d" let inline_dhunk : t -> label -> Dhunk.t -> Var.Set.t = fun t label hunk -> let vertex = length t in let next = ref (vertex + Dhunk.length hunk) in let temps = ref Var.Set.empty in Dhunk.iteri ~f:(fun i inst -> let cur = vertex + i in match inst with | Assign (Var var, rval, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; add_node t cur (Fallthrough { label; kind = Assign { var; rval }; succ = vertex + succ }) | Assign (Restrict (var, { hi; lo }), rval, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; add_node t cur (Fallthrough { label; kind = Assign { var; rval = Dba_types.Expr.complement rval ~hi ~lo var; }; succ = vertex + succ; }) | Assign (Store (_, dir, addr, base), rval, succ) -> add_node t cur (Fallthrough { label; kind = Store { base; dir; addr; rval }; succ = vertex + succ; }) | Nondet (Var var, succ) | Undef (Var var, succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; let kind = match inst with Nondet _ -> Symbolize var | _ -> Clobber var in add_node t cur (Fallthrough { label; kind; succ = vertex + succ }) | Nondet (Restrict (var, { hi; lo }), succ) | Undef (Restrict (var, { hi; lo }), succ) -> if var.info = Var.Tag.Temp then temps := Var.Set.add var !temps; let size' = hi - lo + 1 in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in temps := Var.Set.add var' !temps; let rval = Dba_types.Expr.complement (Dba.Expr.v var') ~lo ~hi var in let succ' = !next in incr next; let kind = match inst with Nondet _ -> Symbolize var' | _ -> Clobber var' in add_node t cur (Fallthrough { label; kind; succ = succ' }); add_node t succ' (Fallthrough { label; kind = Assign { var; rval }; succ = vertex + succ }) | Nondet (Store (bytes, dir, addr, base), succ) | Undef (Store (bytes, dir, addr, base), succ) -> let size' = 8 * bytes in let name' = entropy size' in let var' = Dba.Var.temporary name' (Size.Bit.create size') in let rval = Dba.Expr.v var' in let succ' = !next in incr next; let kind = match inst with Nondet _ -> Symbolize var' | _ -> Clobber var' in add_node t cur (Fallthrough { label; kind; succ = succ' }); add_node t succ' (Fallthrough { label; kind = Store { base; dir; addr; rval }; succ = vertex + succ; }) | Assume (test, succ) -> add_node t cur (Fallthrough { label; kind = Assume test; succ = vertex + succ }) | Assert (test, succ) -> add_node t cur (Fallthrough { label; kind = Assert test; succ = vertex + succ }) | If (test, JInner target, fallthrough) -> add_node t cur (Branch { label; test; target = vertex + target; fallthrough = vertex + fallthrough; }) | If (test, JOuter { base = target; _ }, fallthrough) -> let succ = !next in incr next; add_node t succ (Terminator { label; kind = Goto { target; tag = Default } }); add_node t cur (Branch { label; test; target = succ; fallthrough = vertex + fallthrough; }) | DJump (target, tag) -> add_node t cur (Terminator { label; kind = Jump { target; tag } }) | SJump (JOuter { base = target; _ }, tag) -> add_node t cur (Terminator { label; kind = Goto { target; tag } }) | SJump (JInner succ, _) -> add_node t cur (Fallthrough { label; kind = Nop; succ = vertex + succ }) | Stop (None | Some OK) -> add_node t cur (Terminator { label; kind = Halt }) | Stop (Some KO) -> add_node t cur (Terminator { label; kind = Die "KO" }) | Stop (Some (Unsupported msg)) -> let msg = match label with | Instruction ins -> Format.asprintf "%a # %s" Binstream.pp (Instruction.opcode ins) msg | Hook _ -> msg in add_node t cur (Terminator { label; kind = Die msg }) | Stop (Some (Undecoded msg)) -> add_node t cur (Terminator { label; kind = Die msg })) hunk; !temps let inline_script : t -> label -> stmt list -> Var.Set.t = fun t label stmts -> let labels = StrTbl.create 16 and tolink = StrTbl.create 16 and temps = ref Var.Set.empty in List.iter (fun ins -> let vertex = length t in match ins with | Nop -> () | Opcode kind -> (match kind with | Assign { var = { info = Temp; _ } as var; _ } | Load { var = { info = Temp; _ } as var; _ } | Symbolize ({ info = Temp; _ } as var) | Clobber ({ info = Temp; _ } as var) -> temps := Var.Set.add var !temps | _ -> ()); add_node t vertex (Fallthrough { label; kind; succ = vertex + 1 }) | Label name -> StrTbl.add labels name vertex | If (test, target) -> add_node t vertex (Terminator { label; kind = Halt }); StrTbl.replace tolink target ((Some test, vertex) :: (try StrTbl.find tolink target with Not_found -> [])) | Goto target -> add_node t vertex (Terminator { label; kind = Halt }); StrTbl.replace tolink target ((None, vertex) :: (try StrTbl.find tolink target with Not_found -> [])) | End (Jump { target = Cst bv; tag }) -> add_node t vertex (Terminator { label; kind = Goto { target = Virtual_address.of_bitvector bv; tag }; }) | End (Builtin (Inline hunk)) -> temps := Var.Set.union !temps (inline_dhunk t label hunk) | End kind -> add_node t vertex (Terminator { label; kind })) stmts; StrTbl.iter (fun target preds -> let target = StrTbl.find labels target in List.iter (fun (test, pred) -> match test with | None -> add_node t pred (Fallthrough { label; kind = Nop; succ = target }) | Some test -> add_node t pred (Branch { label; test; target; fallthrough = pred + 1 })) preds) tolink; let vertex = length t in if stmts = [] || IntTbl.mem vertex t.preds then add_node t vertex (Terminator { label; kind = Builtin EndOfHook }); !temps let copy : t -> t = fun { n; nodes; preds; entries; exits } -> IntTbl.freeze nodes; IntTbl.freeze preds; { n; nodes; preds; entries; exits } let empty : unit -> t = fun () -> { n = 0; nodes = IntTbl.empty; preds = IntTbl.empty; entries = IntSet.empty; exits = IntSet.empty; } let init : label -> (t -> Var.Set.t) -> t = fun label f -> let t = empty () in add_node t 0 (Fallthrough { label; kind = (match label with | (Instruction _ as label) | (Hook _ as label) -> label); succ = 1; }); t.entries <- IntSet.add 0 t.entries; let temps = f t in iter_vertex (define_load t) t; IntSet.iter (fun vertex -> let temps = match node t vertex with | Terminator { kind = Jump { target; _ }; _ } -> Var.Set.diff temps (Var.collect target Var.Set.empty) | _ -> temps in Var.Set.iter (fun var -> insert_before t vertex ~label (Forget var)) temps) t.exits; t let of_instruction : Instruction.t -> t = fun ins -> let label = Instruction ins in init label (fun t -> inline_dhunk t label (Instruction.hunk ins)) let of_script : Virtual_address.t -> string -> ?eoh:terminator -> stmt list -> t = fun addr info ?eoh stmts -> let label = Hook { addr; info } in let t = init label (fun t -> inline_script t label stmts) in match eoh with | None -> t | Some kind -> iter_exits (fun v -> match node t v with | Terminator { label; kind = Builtin EndOfHook } -> add_node t v (Terminator { label; kind }) | _ -> ()) t; t let replace_node : t -> vertex -> node -> unit = fun t vertex node -> if t.n <= vertex then raise (Invalid_argument "replace_node"); add_node t vertex node let append_node : t -> node -> vertex = fun t node -> let vertex = length t in add_node t vertex node; vertex let append : t -> from:t -> vertex = fun t ~from -> let vertex = length t in let map_vertex = ( + ) vertex in iter_vertex (fun i -> add_node t (map_vertex i) (shuffle map_vertex (node from i))) from; t.entries <- IntSet.fold (fun i entries -> IntSet.add (map_vertex i) entries) from.entries t.entries; t.exits <- IntSet.fold (fun i entries -> IntSet.add (map_vertex i) entries) from.exits t.exits; vertex end module View = Graph module Killset = struct module IntTbl = Basic_types.Integers.Int.Htbl type t = Var.Set.t IntTbl.t let is_deadstore : t -> Dba.Var.t -> View.vertex -> bool = fun killset var vertex -> try Var.Set.mem var (IntTbl.find killset vertex) with Not_found -> false let analyze_fallthrough : may_read:(builtin -> Var.Set.t option) -> must_write:(builtin -> Var.Set.t) -> fallthrough -> Var.Set.t -> Var.Set.t = fun ~may_read ~must_write kind killset -> match kind with | Nop | Instruction _ | Hook _ | Goto _ -> killset | Clobber var | Forget var | Symbolize var -> Var.Set.add var killset | Assign { var; rval } -> if Var.Set.mem var killset then killset else Var.Set.diff (Var.Set.add var killset) (Var.collect rval Var.Set.empty) | Load { var; addr; _ } -> Var.Set.diff (Var.Set.add var killset) (Var.collect addr Var.Set.empty) | Store { addr; rval; _ } -> Var.Set.diff (Var.Set.diff killset (Var.collect addr Var.Set.empty)) (Var.collect rval Var.Set.empty) | Assume expr | Assert expr -> Var.Set.diff killset (Var.collect expr Var.Set.empty) | Builtin builtin -> ( match may_read builtin with | None -> Var.Set.empty | Some readset -> Var.Set.diff (Var.Set.union killset (must_write builtin)) readset) let analyze_branch : Dba.Expr.t -> Var.Set.t option -> Var.Set.t option -> Var.Set.t = fun test target fallthrough -> match (target, fallthrough) with | None, None -> assert false | None, Some killset | Some killset, None -> Var.Set.diff killset (Var.collect test Var.Set.empty) | Some target, Some fallthrough -> let killset = Var.Set.inter target fallthrough in Var.Set.diff killset (Var.collect test Var.Set.empty) let rec closure : View.t -> may_read:(builtin -> Var.Set.t option) -> must_write:(builtin -> Var.Set.t) -> View.vertex Queue.t -> (View.vertex -> unit) -> t -> unit = fun t ~may_read ~must_write todo push acc -> if not (Queue.is_empty todo) then let vertex = Queue.pop todo in let killset = match View.node t vertex with | Fallthrough { kind; succ; _ } -> analyze_fallthrough ~may_read ~must_write kind (IntTbl.find acc succ) | Branch { test; target; fallthrough; _ } -> analyze_branch test (IntTbl.find_opt acc target) (IntTbl.find_opt acc fallthrough) | Terminator _ -> assert false in match IntTbl.find acc vertex with | old when Var.Set.equal old killset -> closure t ~may_read ~must_write todo push acc | (exception Not_found) | _ -> IntTbl.replace acc vertex killset; View.iter_pred push t vertex; closure t ~may_read ~must_write todo push acc let analyze : View.t -> may_read:(builtin -> Var.Set.t option) -> must_write:(builtin -> Var.Set.t) -> ?sink:IntSet.t -> t -> unit = fun t ~may_read ~must_write ?(sink = t.exits) killset -> let todo = Queue.create () in let push = Fun.flip Queue.push todo in IntSet.iter (fun vertex -> View.iter_pred push t vertex; match View.node t vertex with | Fallthrough { kind; succ; _ } -> IntTbl.add killset vertex (analyze_fallthrough ~may_read ~must_write kind (IntTbl.find killset succ)) | Branch { test; target; fallthrough; _ } -> IntTbl.add killset vertex (analyze_branch test (IntTbl.find_opt killset target) (IntTbl.find_opt killset fallthrough)) | Terminator { kind = Builtin builtin; _ } -> IntTbl.add killset vertex (match may_read builtin with | None -> Var.Set.empty | Some readset -> Var.Set.diff (must_write builtin) readset) | Terminator _ -> IntTbl.add killset vertex Var.Set.empty) sink; closure t ~may_read ~must_write todo push killset end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>